Вычисление площадей фигур, ограниченных заданными линиями. Вычисление площадей плоских фигур с помощью интеграла

Пусть положение любой точки на плоскости однозначно определяется двумя числами , где

.

Пусть
неотрицательная, непрерывная на отрезке
функция,
.

Рассмотрим множество точек

которое можно истолковать как криволинейный треугольник

Для вычисления площади криволинейного треугольника разобьём этот треугольник на элементарные криволинейные треугольники.

Элементарные криволинейные треугольники заменим прямоугольными треугольниками.

Высоты этих треугольников положим равными ,

а основания соответственно – .

Площадь -го элементарного треугольник очевидно будет равна

.

Площадь криволинейного треугольника будет приближённо равна

. (1)

Выражение (1) можно рассматривать как интегральную сумму для функции
на отрезке
.

Введём обозначение
.– это мелкость

разбиения
.

Тогда площадь криволинейного треугольника

получим при переходе в выражении (1) к пределу при

=
. (2)

Итак, площадь плоской фигуры в полярной системе координат равна

.

П р и м е р. Вычислитеплощадь фигуры, ограниченной кривой (кардиоидой)


.

Р е ш е н и е. Изобразим график кардиоиды


Как видим, кардиоида представляет собой линию, симметричную относительно оси
.

П 15. Вычисление длины кривой

Пусть кривая задана параметрически

,
.

Разобьем отрезок
начастей точками.

Обозначим через
соответствующие точки на кривой. Соединим эти точки прямыми.

Полученную при этом ломанную
называют ломанной, вписанной в кривую.

Длину элементарного звена
равна

Длина ломанной
в таком случае будет равна

. (1)

Обозначим через
. Тогда длину кривойполучим, перейдя в выражении (1) к пределу при

. (2)

Итак, длина кривой согласно выражению (2) определяется формулой

. (3)

Длина пространственной кривой , заданной параметрически

,
,

будет равна

.

Если плоская кривая задана в явном виде

,
,

то параметрические уравнения кривой

можно в этом случае представить в виде

,
,
.

В результате выражении (3) получается в виде

.

П р и м е р. Найти длину кривой, заданнойпараметрически.

Р е ш е н и е. Построим график заданной кривой

Так как кривая симметрична относительно координатных осей, то достаточно найти .

Поэтому длина кривой будет равна


.

П 16. Несобственный интеграл первого рода. Критерий Коши. Признаки сравнения.

Студент был задержан при попытке взять

несобственный интеграл. Владелец интеграла выясняется.

Введённое ранее определение интеграла Римана непригодно, если функция f(x) неограниченна на отрезке или промежуток интегрирования бесконечен. В этих случаях понятие определённого интеграла можно обобщить и ввести понятие несобственного интеграла.

Пусть функция f(x) определена на бесконечном полуинтервале V x≥a. Тогда имеем функцию F(x), определённую интегралом

(1)

с переменным верхним пределом.

Перейдём в (1) к пределу при x→+∞ и введём формально следующее обозначение

F(x)=
(2)

Символ
называют несобственным интегралом первого рода. При этом, если предел (2) существует, то несобственный интеграл называется сходящимся. Если предел не существует или равен ∞, то несобственный интеграл называют расходящимся.

Аналогично определяют несобственные интегралы первого рода на (-∞, b] и



,

(3)

Заметим, что в (3) a и b стремятся к бесконечности независимо друг от друга.

Отметим также, что если функция f(x) непрерывна на и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).

Определенный интеграл ʃ а b f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃ а b f(x)dx.

Таким образом, S(G) = ʃ а b f(x)dx.

В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃ а b f(x)dx.

Пример 1.

Вычислить площадь фигуры, ограниченной линиями у = х 3 ; у = 1; х = 2.

Решение.

Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

Используя формулу S = ʃ а b f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

{у = х 3 ,
{у = 1.

Таким образом, имеем х 1 = 1 – нижний предел и х = 2 – верхний предел.

Итак, S = S DACE – S DABE = ʃ 1 2 x 3 dx – 1 = x 4 /4| 1 2 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

Ответ: 11/4 кв. ед.

Пример 2.

Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

Решение.

Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

Искомая площадь равна S = ʃ а b (√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

{у = √х,
{у = 2.

Таким образом, имеем, что х = 4 = а – это нижний предел.

Итак, S = ∫ 4 9 (√x – 2)dx = ∫ 4 9 √x dx –∫ 4 9 2dx = 2/3 x√х| 4 9 – 2х| 4 9 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

Ответ: S = 2 2/3 кв. ед.

Пример 3.

Вычислить площадь фигуры, ограниченной линиями у = х 3 – 4х; у = 0; х ≥ 0.

Решение.

Построим график функции у = х 3 – 4х при х ≥ 0. Для этого найдем производную у’:

y’ = 3x 2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции у min = -16/(3√3) ≈ -3.

Определим точки пересечения графика с осями координат:

если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

если у = 0, то х 3 – 4х = 0 или х(х 2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х 1 = 0, х 2 = 2, х 3 = -2 (не подходит, т.к. х ≥ 0).

Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

Так как функция у = х 3 – 4х принимает на (0; 2) отрицательное значение, то

S = |ʃ 0 2 (x 3 – 4x)dx|.

Имеем: ʃ 0 2 (x 3 – 4х)dx =(x 4 /4 – 4х 2 /2)| 0 2 = -4, откуда S = 4 кв. ед.

Ответ: S = 4 кв. ед.

Пример 4.

Найти площадь фигуры, ограниченной параболой у = 2х 2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х 0 = 2.

Решение.

Сначала составим уравнение касательной к параболе у = 2х 2 – 2х + 1 в точке с абсциссой х₀ = 2.

Так как производная y’ = 4x – 2, то при х 0 = 2 получим k = y’(2) = 6.

Найдем ординату точки касания: у 0 = 2 · 2 2 – 2 · 2 + 1 = 5.

Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

Построим фигуру, ограниченную линиями:

у = 2х 2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

Г у = 2х 2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х 2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

x b = 2/4 = 1/2;

y b = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

Имеем: S О A В D = S OABC – S ADBC .

Найдем координаты точки D из условия:

6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

Площадь треугольника DBC найдем по формуле S ADBC = 1/2 · DC · BC. Таким образом,

S ADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

S OABC = ʃ 0 2 (2x 2 – 2х + 1)dx = (2x 3 /3 – 2х 2 /2 + х)| 0 2 = 10/3 (кв. ед.).

Окончательно получим: S О A В D = S OABC – S ADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

Ответ: S = 1 1/4 кв. ед.

Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями . Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

На этом уроке будем учиться вычислять площади плоских фигур , которые называются криволинейными трапециями .

Примеры таких фигур - на рисунке ниже.

С одной стороны, найти площадь плоской фигуры с помощью определённого интеграла предельно просто. Речь идёт о площади фигуры, которую сверху ограничивает некоторая кривая, снизу - ось абсцисс (Ox ), а слева и справа - некоторые прямые. Простота в том, что определённый интеграл функции, которой задана кривая, и есть площадь такой фигуры (криволинейной трапеции).

Для вычисления площади фигуры нам понадобятся:

  1. Определённый интеграл от функции, задающей кривую , которая ограничивает криволинейную трапецию сверху. И здесь возникает первый существенный нюанс: криволинейная трапеция может быть ограничена кривой не только сверху, но и снизу . Как действовать в этом случае? Просто, но это важно запомнить: интеграл в этом случае берётся со знаком минус .
  2. Пределы интегрирования a и b , которые находим из уравнений прямых, ограничивающих фигуру слева и справа: x = a , x = b , где a и b - числа.

Отдельно ещё о некоторых нюансах .

Кривая, которая ограничивает криволинейную трапецию сверху (или снизу) должна быть графиком непрерывной и неотрицательной функции y = f (x ) .

Значения "икса" должны принадлежать отрезку [a , b ] . То есть не учитываются такие, например, линии, как разрез гриба, у которого ножка вполне вписывается в этот отрезок, а шляпка намного шире.

Боковые отрезки могут вырождаться в точки . Если вы увидели такую фигуру на чертеже, это не должно вас смущать, так как эта точка всегда имеет своё значение на оси "иксов". А значит с пределами интегрирования всё в порядке.

Теперь можно переходить к формулам и вычислениям. Итак, площадь s криволинейной трапеции может быть вычислена по формуле

Если же f (x ) ≤ 0 (график функции расположен ниже оси Ox ), то площадь криволинейной трапеции может быть вычислена по формуле

Есть ещё случаи, когда и верхняя, и нижняя границы фигуры - функции, соответственно y = f (x ) и y = φ (x ) , то площадь такой фигуры вычисляется по формуле

. (3)

Решаем задачи вместе

Начнём со случаев, когда площадь фигуры может быть вычислена по формуле (1).

Пример 1. Ox ) и прямыми x = 1 , x = 3 .

Решение. Так как y = 1/x > 0 на отрезке , то площадь криволинейной трапеции находим по формуле (1):

.

Пример 2. Найти площадь фигуры, ограниченной графиком функции , прямой x = 1 и осью абсцисс (Ox ).

Решение. Результат применения формулы (1):

Если то s = 1/2 ; если то s = 1/3 , и т.д.

Пример 3. Найти площадь фигуры, ограниченной графиком функции , осью абсцисс (Ox ) и прямой x = 4 .

Решение. Фигура, соответствующая условию задачи - криволинейная трапеция, у которой левый отрезок выродился в точку. Пределами интегрирования служат 0 и 4. Поскольку , по формуле (1) находим площадь криволинейной трапеции:

.

Пример 4. Найти площадь фигуры, ограниченной линиями , , и находящейся в 1-й четверти.

Решение. Чтобы воспользоваться формулой (1), представим площадь фигуры, заданной условиями примера, в виде суммы площадей треугольника OAB и криволинейной трапеции ABC . При вычислении площади треугольника OAB пределами интегрирования служат абсциссы точек O и A , а для фигуры ABC - абсциссы точек A и C (A является точкой пересечения прямой OA и параболы, а C - точкой пересечения параболы с осью Ox ). Решая совместно (как систему) уравнения прямой и параболы, получим (абсциссу точки A ) и (абсциссу другой точки пересечения прямой и параболы, которая для решения не нужна). Аналогично получим , (абсциссы точек C и D ). Теперь у нас еть всё для нахождения площади фигуры. Находим:

Пример 5. Найти площадь криволинейной трапеции ACDB , если уравнение кривой CD и абсциссы A и B соответственно 1 и 2.

Решение. Выразим данное уравнение кривой через игрек: Площадь криволинейной трапеции находим по формуле (1):

.

Переходим к случаям, когда площадь фигуры может быть вычислена по формуле (2).

Пример 6. Найти площадь фигуры, ограниченной параболой и осью абсцисс (Ox ).

Решение. Данная фигура расположена ниже оси абсцисс. Поэтому для вычисления её площади воспользуемся формулой (2). Пределами интегрирования являются абсциссы и точек пересечения параболы с осью Ox . Следовательно,

Пример 7. Найти площадь, заключённую между осью абсцисс (Ox ) и двумя соседними волнами синусоиды.

Решение. Площадь данной фигуры можем найти по формуле (2):

.

Найдём отдельно каждое слагаемое:

.

.

Окончательно находим площадь:

.

Пример 8. Найти площадь фигуры, заключённой между параболой и кривой .

Решение. Выразим уравнения линий через игрек:

Площадь по формуле (2) получим как

,

где a и b - абсциссы точек A и B . Найдём их, решая совместно уравнения:

Окончательно находим площадь:

И, наконец, случаи, когда площадь фигуры может быть вычислена по формуле (3).

Пример 9. Найти площадь фигуры, заключённой между параболами и .

Поделиться