Тригонометрические функции числового аргумента. Свойства и графики тригонометрических функций 1 тригонометрические функции числового аргумента

В настоящей главе мы введем тригонометрические функции числового аргумента. Многие вопросы математики, механики, физики и других наук приводят к тригонометрическим функциям не только угла (дуги), но и аргументов совершенно различной природы (длина, время, температура и т. д.). До сих пор под аргументом тригонометрической функции понимался угол, измеренный в градусах или радианах. Теперь мы обобщим понятия синуса, косинуса, тангенса, котангенса, секанса и косеканса, введя их как функции числового аргумента.

Определение. Тригонометрическими функциями числового аргумента называются одноименные тригонометрические функции угла, равного радианам.

Поясним это определение на конкретных примерах.

Пример 1. Вычислим значенйе . Здесь под мы понимаем отвлеченное иррациональное число. Согласно определению . Итак, .

Пример 2. Вычислим значение . Здесь под 1,5 мы понимаем отвлеченное число. Согласно определению (см. приложение II).

Пример 3. Вычислим значение Аналогично предыдущему получаем (см. приложение II).

Итак, в дальнейшем под аргументом тригонометрических функций мы будем понимать угол (дугу) или просто число в зависимости от той задачи, которую решаем. А в ряде случаев аргументом может служить величина, имеющая и другую размерность, например время и т. д. Называя аргумент углом (дугой), мы можем подразумевать под ним число, с помощью которого он измерен в радианах.

Урок и презентация на тему: "Тригонометрическая функция числового аргумента, определение, тождества"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Определение числового аргумента.
2. Основные формулы.
3. Тригонометрические тождества.
4. Примеры и задачи для самостоятельного решения.

Определение тригонометрической функции числового аргумента

Ребята, мы знаем что такое синус, косинус, тангенс и котангенс.
Давайте посмотрим, можно ли через значения одних тригонометрических функций найти значения других тригонометрических функций?
Определим тригонометрическую функцию числового элемента, как: $y= sin(t)$, $y= cos(t)$, $y= tg(t)$, $y= ctg(t)$.

Вспомним основные формулы:
$sin^2(t)+cos^2(t)=1$. Кстати, как называется эта формула?

$tg(t)=\frac{sin(t)}{cos(t)}$, при $t≠\frac{π}{2}+πk$.
$ctg(t)=\frac{cos(t)}{sin(t)}$, при $t≠πk$.

Давайте выведем новые формулы.

Тригонометрические тождества

Мы знаем основное тригонометрическое тождество: $sin^2(t)+cos^2(t)=1$.
Ребята, давайте обе части тождества разделим на $cos^2(t)$.
Получим: $\frac{sin^2(t)}{cos^2(t)}+\frac{cos^2(t)}{cos^2(t)}=\frac{1}{cos^2(t)}$.
Преобразуем: $(\frac{sin(t)}{cos(t)})^2+1=\frac{1}{cos^2(t)}.$
У нас получается тождество: $tg^2(t)+1=\frac{1}{cos^2(t)}$, при $t≠\frac{π}{2}+πk$.

Теперь разделим обе части тождества на $sin^2(t)$.
Получим: $\frac{sin^2(t)}{sin^2(t)}+\frac{cos^2(t)}{sin^2(t)}=\frac{1}{sin^2(t)}$.
Преобразуем: $1+(\frac{cos(t)}{sin(t)})^2=\frac{1}{sin^2(t)}.$
У нас получается новое тождество, которое стоит запомнить:
$ctg^2(t)+1=\frac{1}{sin^2(t)}$, при $t≠πk$.

Нам удалось получить две новых формулы. Запомните их.
Эти формулы используются, если по какому-то известному значению тригонометрической функции требуется вычислить значение другой функции.

Решение примеров на тригонометрические функции числового аргумента

Пример 1.

$cos(t) =\frac{5}{7}$, найти $sin(t)$; $tg(t)$; $ctg(t)$ для всех t.

Решение:

$sin^2(t)+cos^2(t)=1$.
Тогда $sin^2(t)=1-cos^2(t)$.
$sin^2(t)=1-(\frac{5}{7})^2=1-\frac{25}{49}=\frac{49-25}{49}=\frac{24}{49}$.
$sin(t)=±\frac{\sqrt{24}}{7}=±\frac{2\sqrt{6}}{7}$.
$tg(t)=±\sqrt{\frac{1}{cos^2(t)}-1}=±\sqrt{\frac{1}{\frac{25}{49}}-1}=±\sqrt{\frac{49}{25}-1}=±\sqrt{\frac{24}{25}}=±\frac{\sqrt{24}}{5}$.
$ctg(t)=±\sqrt{\frac{1}{sin^2(t)}-1}=±\sqrt{\frac{1}{\frac{24}{49}}-1}=±\sqrt{\frac{49}{24}-1}=±\sqrt{\frac{25}{24}}=±\frac{5}{\sqrt{24}}$.

Пример 2.

$tg(t) = \frac{5}{12}$, найти $sin(t)$; $cos(t)$; $ctg(t)$, при всех $0

Решение:
$tg^2(t)+1=\frac{1}{cos^2(t)}$.
Тогда $\frac{1}{cos^2(t)}=1+\frac{25}{144}=\frac{169}{144}$.
Получаем, что $cos^2(t)=\frac{144}{169}$.
Тогда $cos^2(t)=±\frac{12}{13}$, но $0 Косинус в первой четверти положительный. Тогда $cos(t)=\frac{12}{13}$.
Получаем: $sin(t)=tg(t)*cos(t)=\frac{5}{12}*\frac{12}{13}=\frac{5}{13}$.
$ctg(t)=\frac{1}{tg(t)}=\frac{12}{5}$.

Задачи для самостоятельного решения

1. $tg(t) = -\frac{3}{4}$, найти $sin(t)$; $cos(t)$; $ctg(t)$, при всех $\frac{π}{2} 2. $сtg(t) =\frac{3}{4}$, найти $sin(t)$; $cos(t)$; $tg(t)$, при всех $π 3. $sin(t) = \frac{5}{7}$, найти $cos(t)$; $tg(t)$; $ctg(t)$ для всех $t$.
4. $cos(t) = \frac{12}{13}$, найти $sin(t)$; $tg(t)$; $ctg(t)$ для всех $t$.

Цели урока:

Образовательные:

  • Обеспечить повторение, обобщение и систематизацию материала темы “Тригонометрические функции числового аргумента”;
  • Создать условия контроля (самоконтроля) усвоения знаний и умений.

Развивающие:

  • Способствовать формированию умения применять приёмы – сравнения, обобщения, выделения главного, переноса знаний в новую ситуацию;
  • Развитие математического кругозора, мышления, речи, внимания и памяти.

Воспитательные:

  • Содействовать воспитанию интереса к математике, активности, умения общаться, общей культуры.

Тип урока: урок обобщения и систематизации знаний.

Методы обучения: частично-поисковый, (эвристический).

Тестовая проверка уровня знаний, решение познавательных обобщающих задач, самопроверка, системные обобщения.

План урока.

  1. Орг. момент – 2 мин.
  2. Тест с самопроверкой – 10 мин.
  3. Сообщение по теме – 3 мин.
  4. Систематизация теоретического материала – 15 мин.
  5. Дифференцированная самостоятельная работа с самопроверкой – 10 мин.
  6. Итог самостоятельной работы – 2 мин.
  7. Подведение итогов урока – 3 мин.

Ход урока

1. Организационный момент.

Задание на дом:

Параграф 1, пункт 1.4
- Зачётные работы (задания были вывешены на стенде).

Французский писатель Анатоль Франс однажды заметил: “Учиться можно только весело. Чтобы переваривать знания, надо поглощать их с аппетитом”. Давайте сегодня на уроке будем следовать этому совету писателя, будем активны, внимательны, будем поглощать знания с большим желанием. Ведь они пригодятся вам в дальнейшем.

Сегодня у нас заключительный урок по теме: “Тригонометрические функции числового аргумента”. Повторяем, обобщаем изученный материал, методы и приёмы решения тригонометрических выражений.

2. Тест с самопроверкой.

Работа проводится в двух вариантах. Вопросы на экране.

1 вариант 2 вариант
1 Дайте определение синуса и косинуса острого угла Дайте определение тангенса и котангенса острого угла
2 Какие числовые функции называют тангенсом и котангенсом? Дайте определение. Какие числовые функции называют синусом и косинусом? Дайте определение.
3 Точка единичной окружности имеет координаты . Найдите значения sin, cos. Точка единичной окружности имеет координаты (- 0,8; - 0,6). Найдите значение tg , ctg .
4 Какие из основных тригонометрических функций являются нечётными? Запишите соответствующие равенства. Какие из основных тригонометрических функций являются чётными? Запишите соответствующие равенства.
5 Как изменяются значения синуса и косинуса при изменении угла на целое число оборотов? Запишите соответствующие равенства. Как изменяются значения тангенса и котангенса при изменении угла на целое число оборотов? В чём особенность? Запишите соответствующие равенства.
6 Найдите значения sin cos, sin(- 630°), cos (- 630°). Найдите значения tg , ctg , tg 540°, ctg(-450°).
7 На каком рисунке изображён график функции у= sin x?

На каком рисунке изображён график функции у= tg х?

8 Запишите формулы приведения для углов ( - ), (- ). Запишите формулы приведения для углов (+ ), (+ ).
9 Напишите формулы сложения. Напишите основные тригонометрические тождества.
10 Напишите формулы понижения степени. Напишите формулы двойного аргумента.

Учащиеся отмечают неправильные шаги. Количество правильных ответов заносится в листок учёта знаний.

3. Сообщение.

Сообщение об истории развития тригонометрии (выступает подготовленный ученик).

4. Систематизация теоретического материала.

Устные задания.

1) О чём речь? Что особенного?

Определите знак выражения:

а) cos (700°) tg 380°,
б) cos (- 1) sin(- 2)

2) О чём говорит этот блок формул? В чём ошибка?

3) Рассмотрим таблицу:

Тригонометрические преобразования

Отыскание значений тригонометрических выражений Нахождение значения тригонометрической функции по известному значению данной тригонометрической функции Упрощение тригонометричес-ких выражений Тождества

4) Решение задач каждого вида тригонометрических преобразований.

Отыскание значений тригонометрических выражений.

Нахождение значения тригонометрической функции по известному значению данной тригонометрической функции.

Дано: sin = ; < <

Найти cos2, ctg2.

Ответ: . < < 2

Найти: cos2 , tg2

Третий уровень сложности:

Дано: sin = ; < <

Найти: sin2 ; sin (60° - ); tg (45° + )

Дополнительное задание.

Докажите тождество:

4 sin 4 - 4 sin 2 = cos 2 2 - 1

6. Итог самостоятельной работы.

Учащиеся проверяют работу и заносят результаты в листок учёта знаний.

7. Подводится итог урока.

Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число sin t. Правда, правило соответствия довольно сложное, оно, как мы видели выше, заключается в следующем.

Чтобы по числу t найти значение sin t, нужно:

1) расположить числовую окружность в координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0);

2) на окружности найти точку, соответствующую числу t;

3) найти ординату этой точки.

Эта ордината и есть sin t.

Фактически речь идет о функции u = sin t, где t -- любое действительное число.

Все эти функции называют тригонометрическими функциями числового аргумента t.

Есть целый ряд соотношений, связывающих значения различных тригонометрических функций, некоторые из этих соотношений мы уже получили:

sin 2 t+cos 2 t = 1

Из двух последних формул легко получить соотношение, связывающее tg t и ctg t:

Все указанные формулы используются в тех случаях, когда, зная значение какой-либо тригонометрической функции, требуется вычислить значения остальных тригонометрических функций.

Термины «синус», «косинус», «тангенс» и «котангенс» на самом деле были знакомы, правда, использовали их до сих пор в несколько иной интерпретации: в геометрии и в физике рассматривали синус, косинус, тангенс и котангенс у г л а (а не

числа, как это было в предыдущих параграфах).

Из геометрии известно, что синус (косинус) острого угла -- это отношение катета прямоугольного треугольника к его гипотенузе, а тангенс (котангенс) угла -- это отношение катетов прямоугольного треугольника. Иной подход к понятиям синуса, косинуса, тангенса и котангенса развивали в предыдущих параграфах. На самом деле эти подходы взаимосвязаны.

Возьмем угол с градусной мерой б o и расположим его в модели «числовая окружность в прямоугольной системе координат» так, как показано на рис. 14

вершину угла совместим с центром

окружности (с началом системы координат),

а одну сторону угла совместим с

положительным лучом оси абсцисс. Точку

пересечения второй стороны угла с

окружностью обозначим буквой М. Ордина-

рис 14 б o , а абсциссу этой точки -- косинусом угла б o .

Для отыскания синуса или косинуса угла б o совсем не обязательно каждый раз делать указанные весьма сложные построения.

Достаточно заметить, что дуга AM составляет такую же часть длины числовой окружности, какую угол б o составляет от утла 360°. Если длину дуги AM обозначить буквой t, то получим:

Таким образом,

Например,

Считают, что 30° -- это градусная мера угла, а -- радианная мера того же угла: 30° = рад. Вообще:

В частности, рад, откуда, в свою очередь, получаем.

Так что же такое 1 радиан? Есть различные меры длин отрезков: сантиметры, метры, ярды и т.д. Есть и различные меры для обозначения величин углов. Мы рассматриваем центральные углы единичной окружности. Угол в 1° -- это центральный угол, опирающийся на дугу, составляющую часть окружности. Угол в 1 радиан -- это центральный угол, опирающийся на дугу длиной 1, т.е. на дугу, длина которой равна радиусу окружности. Из формулы, получаем, что 1 рад = 57,3°.

Рассматривая функцию u = sin t (или любую другую тригонометрическую функцию), мы можем считать независимую переменную t числовым аргументом, как это было в предыдущих параграфах, но можем считать эту переменную и мерой угла, т.е. угловым аргументом. Поэтому, говоря о тригонометрической функции, в определенном смысле безразлично считать ее функцией числового или углового аргумента.

Мы рассмотрели самые основные тригонометрические функции (не обольщайтесь помимо синуса, косинуса, тангенса и котангенса существует еще целое множество других функций, но о них позже), а пока рассмотрим некоторые основные свойства уже изученных функций.

Тригонометрические функции числового аргумента

Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число sin(t) . Правда, правило соответствия довольно сложное и заключается в следующем.

Чтобы по числу t найти значение sin(t) , нужно:

  1. расположить числовую окружность на координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0);
  2. на окружности найти точку, соответствующую числу t ;
  3. найти ординату этой точки.
  4. эта ордината и есть искомое sin(t) .

Фактически речь идет о функции s = sin(t) , где t - любое действительное число. Мы умеем вычислять некоторые значения этой функции (например, sin(0) = 0 , \(sin \frac {\pi}{6} = \frac{1}{2} \) и т.д.), знаем некоторые ее свойства.

Точно так же мы можем считать, что уже получили некоторые представления еще о трех функциях: s = cos(t) s = tg(t) s = ctg(t) Все эти функции называют тригонометрическими функциями числового аргумента t .

Связь тригонометрических функций

Как вы, надеюсь, догадываетесь все тригонометрические функции связаны между собой и даже не зная значение одной, ее можно найти через другое.

К примеру, самая главная формула, из всей тригонометрии - это основное тригонометрическое тождество :

\[ sin^{2} t + cos^{2} t = 1 \]

Как видите, зная значение синуса можно найти значение косинуса, и также наоборот. Также очень распространенные формулы, связывающие синус и косинус с тангенсом и котангенсом:

\[ \boxed {\tan\; t=\frac{\sin\; t}{\cos\; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {\cot\; t=\frac{\cos\; }{\sin\; }, \qquad t \neq \pi k} \]

Из двух последних формул можно вывести еще одно тригометрическое тождество, связывающее на этот раз тангенс и котангенс:

\[ \boxed {\tan \; t \cdot \cot \; t = 1, \qquad t \neq \frac{\pi k}{2}} \]

Теперь давайте посмотрим, как эти формулы действуют на практике.

ПРИМЕР 1. Упростить выражение: а) \(1+ \tan^2 \; t \), б) \(1+ \cot^2 \; t \)

а) В первую очередь распишем тангенс, сохраняя квадрат:

\[ 1+ \tan^2 \; t = 1 + \frac{\sin^2 \; t}{\cos^2 \; t} \]

\[ 1 + \frac{\sin^2 \; t}{\cos^2 \; t}= \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} \]

Теперь введем все под общий знаменатель, и получаем:

\[ \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} = \frac{\cos^2 \; t + \sin^2 \; t}{\cos^2 \; t} \]

Ну и наконец, как мы видим числитель можно по основному тригонометрическому тождеству сократить до единицы, в итоге получаем: \[ 1+ \tan^2 \; = \frac{1}{\cos^2 \; t} \]

б) С котангенсом выполняем все те же самые действия, только в знаменателе будет уже не косинус, а синус и ответ получится таким:

\[ 1+ \cot^2 \; = \frac{1}{\sin^2 \; t} \]

Выполнив данное задание мы вывели еще две очень важные формулы, связывающие наши функции, которые тоже нужно знать, как свои пять пальцев:

\[ \boxed {1+ \tan^2 \; = \frac{1}{\cos^2 \; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {1+ \cot^2 \; = \frac{1}{\sin^2 \; t}, \qquad t \neq \pi k} \]

Все представленные в рамках формулы вы должны знать наизусть, иначе дальнейшее изучение тригонометрии без них просто невозможно. В дальнейшем будут еще формулы и их будет очень много и уверяю все их вы точно будете запоминать долго, а может и не запомните, но эти шесть штук должны знать ВСЕ!

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Поделиться