Примерная вольт амперная характеристика выпрямительного диода. Особенности вольт-амперных характеристик выпрямительных диодов

На рис. 2.9 представлена вольт-амперная характеристика кремниевого выпрямительного диода при различной температуре окружающей среды.

Максимально допустимые прямые токи кремниевых плоскостных диодов различных типов составляют 0,1…1600 А. Падение напряжения на диодах при этих токах обычно не превышает 1,5 В. С увеличением температуры прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера

p–n -перехода и с перераспределением носителей заряда по энергетическим уровням.

Обратная ветвь вольт-амперной характеристики кремниевых диодов не имеет участка насыщения обратного тока, т.к. обратный ток в кремниевых диодах вызван процессом генерации носителей заряда в p–n -переходе. Пробой кремниевых диодов имеет лавинный характер. Поэтому пробивное напряжение с увеличением температуры увеличивается. Для некоторых типов кремниевых диодов при комнатной температуре пробивное напряжение может составлять 1500…2000 В.

Диапазон рабочих температур для кремниевых выпрямительных диодов ограничивается значениями – 60…+125 C . Нижний предел рабочих температур обусловлен различием температурных коэффициентов линейного расширения различных элементов конструкции диода: при низких температурах возникают механические напряжения, которые могут привести к растрескиванию кристалла. С уменьшением температуры также необходимо учитывать увеличение прямого падения напряжения на диоде, происходящее из-за увеличения высоты потенциального барьера на p–n -переходе.

Верхний предел диапазона рабочих температур выпрямительных диодов определяется резким ухудшением выпрямления в связи с ростом обратного тока – сказывается тепловая генерация носителей заряда в результате ионизации атомов полупроводника. Исходя из этого верхний предел диапазона рабочих температур кремниевых выпрямительных диодов, как и большинства других полупроводниковых приборов, связан с шириной запрещенной зоны исходного полупроводникового материала.

На рис. 2.10 представлена вольт-амперная характеристика германиевого выпрямительного диода при различной температуре окружающей среды.

Прямое напряжение на германиевом диоде при максимально допустимом прямом токе практически в два раза меньше, чем на кремниевом диоде. Это связано с меньшей высотой потенциального барьера германиевого перехода, что является достоинством, но, к сожалению, единственным.

Для германиевых диодов характерно существование обратного тока насыщения, что связано с механизмом образования обратного тока – процессом экстракции неосновных носителей заряда.

Плотность обратного тока в германиевых диодах значительно больше, т.к. при прочих равных условиях концентрация неосновных носителей заряда в германии на несколько порядков больше, чем в кремнии. Это приводит к тому, что для германиевых диодов пробой имеет тепловой характер. Поэтому пробивное напряжение с увеличением температуры уменьшается, а значения этого напряжения меньше пробивных напряжений кремниевых диодов.



Верхний предел диапазона рабочих температур германиевых диодов составляет около 75 C .

Существенной особенностью германиевых диодов и их недостатком является то, что они плохо выдерживают даже очень кратковременные импульсные перегрузки при обратном смещении p–n -перехода. Определяется это механизмом пробоя – тепловым пробоем, происходящим при шнуровании тока с выделением большой удельной мощности в месте пробоя.

Перечисленные особенности кремниевых и германиевых выпрямительных диодов связаны с различием ширины запрещенной зоны исходных полупроводников. Из такого сопоставления видно, что выпрямительные диоды с большей шириной запрещенной зоны обладают существенными преимуществами в свойствах и параметрах. Одним из таких представителей является арсенид галлия.

В настоящее время, выпускаемые промышленностью арсенид-галлиевые выпрямительные диоды еще далеки от оптимально возможных. К примеру, диод типа АД112А имеет максимально допустимый прямой ток 300 мА при прямом напряжении 3 В. Большая величина прямого напряжения является недостатком всех выпрямительных диодов, p–n -переходы которых сформированы в материале с широкой запрещенной зоной. Максимально допустимое обратное напряжение для данного диода –50 В. Это объясняется, вероятнее всего, тем, что в области p–n -перехода имеется большая концентрация дефектов из-за несовершенства технологии.

Достоинствами арсенид-галлиевых выпрямительных диодов являются большой диапазон рабочих температур и лучшие частотные свойства. Верхний предел рабочих температур для диодов АД112А составляет 250 С. Арсенид-галлиевые диоды АД110А могут работать в выпрямителях малой мощности до частоты 1 МГц, что обеспечивается малым временем жизни носителей заряда в этом материале.

Выводы:

1. С повышением температуры обратный ток у германиевых выпрямительных диодов резко возрастает за счет роста теплового тока.

2. У кремниевых диодов тепловой ток очень мал, и поэтому они могут работать при более высоких температурах и с меньшим обратным током, чем германиевые диоды.

3. Кремниевые диоды могут работать при значительно больших обратных напряжениях, чем германиевые диоды. Максимально допустимое постоянное обратное напряжение у кремниевых диодов увеличивается с повышением температуры до максимального значения, в то время как у германиевых диодов резко падает.

4. Вследствие указанных преимуществ в настоящее время выпрямительные диоды в основном изготавливают на основе кремния.

Введение

Полупроводниковый диод полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.

Условное графическое обозначение (рис. 1) зависит от конструкции диода.

а б в г д е

а – диод; б – стабилитрон; в – симметричный стабилитрон;

г – туннельный диод; д – варикап; е – обращённый диод

Рисунок 1 – Обозначение диодов на принципиальных схемах

Основные характеристики и параметры диодов:

Вольт-амперная характеристика;

Постоянный обратный ток диода;

Постоянное обратное напряжение диода;

Постоянный прямой ток диода;

Диапазон частот диода;

Дифференциальное сопротивление;

- ёмкость;

Пробивное напряжение;

Максимально допустимая мощность;

Максимально допустимый постоянный прямой ток диода.

Типы диодов по назначению

Выпрямительные диоды предназначены для преобразования переменного тока в постоянный.

Импульсные диоды имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.

Детекторные диоды предназначены для детектирования сигнала

Смесительные диоды предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты.

Переключательные диоды предназначены для применения в устройствах управления уровнем сверхвысокочастотной мощности.

Параметрические

Ограничительные диоды (диаки, супрессоры) предназначены для защиты радио и бытовой аппаратуры от повышения сетевого напряжения.

Умножительные

Настроечные

Генераторные

Типы диодов по частотному диапазону

Низкочастотные

Высокочастотные

Типы диодов по размеру перехода

Плоскостные

Точечные

Типы диодов по конструкции

Диоды Шоттки

СВЧ-диоды

Стабилитроны

Стабисторы

Варикапы

Светодиоды

Фотодиоды

Лавинный диод

Лавинно-пролётный диод

Диод Ганна

Туннельные диоды

Обращённые диоды

Вольт-амперная характеристика диода

Технические параметры диода в основном определяются его вольтамперной характеристикой (ВАХ), типовой вид которой представлен на рис. 1. Обозначения и определения основных параметров диодов и тиристоров регламентируются стандартами: «Термины, определения и буквенные обозначения» ГОСТ 20332-84. На характеристике можно выделить две типичные ветви: прямую и обратную. Прямая ветвь соответствует проводящему состоянию диода при полярности прямого напряжения. Обратная ветвь показывает закрытое состояние диода при соответствующей полярности обратного напряжения. Прямая ветвь характеризуется малыми значениями прямого напряжения на диоде, а обратная – малыми значениями тока, называемого обратным.

Рисунок 2 – ВАХ диода

При подключении постоянного источника питания «плюсом» к аноду диода (области р – типа), а «минусом» к катоду (области n – типа) диод оказывается в открытом состоянии и в цепи потечёт ток, величина которого зависит от свойств прибора и величины приложенного напряжения. Прямая полярность подключения определяет движение электронов из области n – типа в сторону области р – типа, а «дырки» из области р – типа движутся навстречу электронам. Встречаясь в области р – n перехода носители рекомбинируют и прекращают своё существование. Отрицательный заряд батареи поставляет неограниченное число электронов в n область, а положительный сгенерирует неограниченное число «дырок» в р области. В таком случае сопротивление р – n перехода мало, что способствует протеканию прямого тока.

При обратном подключении источника питания к прибору, электрические заряды на диоде поведут себя по другому: электроны в области n проводимости будут стремиться к положительному заряду, удаляясь от р – n перехода. В свою очередь, дырки в области р проводимости станут перемещаться к отрицательному электроду так же удаляясь от р – n перехода. В итоге граница областей с различной проводимостью расширится и образует зону, обеднённую любыми носителями. Такая зона оказывает току большое сопротивление, однако небольшой обмен носителями здесь всё же происходит, а значит, есть и ток, но его величина во много раз меньше прямого. Этот ток принято называть обратным током диода.

Порядок выполнения работы:

1) запустить программу «Multisim»;

2) используя встроенную библиотеку компонентов и приборов составить схему из приложения А;

3) установить на генераторе синусоидальное напряжение 3В частотой 5 Гц;

4) запустить симуляцию, настроить осциллограф в режиме развёртки В-А так, чтобы было хорошо видно прямую ветвь (рис. 2) ВАХ диода;

5) остановить симуляцию, зарисовать ВАХ диода;

6) установить на генераторе синусоидальное напряжение 150 В частотой 5 Гц;

7) запустить симуляцию, настроить осциллограф в режиме развёртки В-А так, чтобы было хорошо видно обратную ветвь (рис. 2) ВАХ диода;

8) остановить симуляцию, зарисовать ВАХ диода;

10) аналогичным способом измерить ВАХ полупроводникового стабилитрона (приложение Б, настройки генератора – 4 В, 5 Гц);

11) составить схему для диака из приложения В;

12) мультиметр настроить на режим измерения тока, осциллограф на режим обычной временной развёртки;

13) повысив напряжение при помощи переключения обмоток трансформатора, убедиться в перегорании предохранителя;

14) остановить симуляцию, сделать выводы, объяснить что происходит;

15) составить схему выпрямительного моста (приложение Г);

16) установить на генераторе синусоидальное напряжение 9 В частотой 50 Гц;

17) запустить симуляцию, настроить осциллограф;

18) исследовать схему, меняя напряжение и переключая нагрузку, добиться перегорания лампы и предохранителей;

19) остановить симуляцию, сделать выводы, зарисовать осциллограммы;

20) составить схему исследования диода (приложение Д);

21) запустить симуляцию, переключиться на генератор синусоидальных колебаний, настроить осциллографы;

22) сравнить осциллограммы параллельных приборов;

23) переключиться на батарею постоянного тока, изменяя движок переменного резистора R1 построить зависимость напряжения U2 (XMM2) от напряжения U1 (XMM1);

25) закрыть программу;

26) ответить на контрольные вопросы.

    Выпрямительные ПП диоды. Особенности конструкции. ВАХ. Основные параметры.

    Уравнения коллекторных токов для схем включения ОБ и ОЭ.

Коэффициенты передачи тока, их соотношения.

1. Выпрямительные ПП диоды.

Выпрямительный диод предназначен для преобразования переменного напряжения в постоянное. Идеальный выпрямитель должен при одной полярности ток пропускать, при другой полярности не пропускать. Свойства полупроводникового диода близки к свойствам идеального выпрямителя, поскольку его сопротивление в прямом направлении на несколько порядков отличается от сопротивления в обратном. К основным недостаткам полупроводникового диода следует отнести: при прямом смещении -наличие области малых токов на начальном участке и конечного сопротивления rs ; при обратном - наличие пробоя.

Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты (менее 50 кГц).

Особенности конструкции.

По уровню рассеиваемой мощности различают диоды:

малой мощности (выпрямленный ток не более 300 мА);

средней мощности (выпрямленный ток от 400 мА до 10 А);

большой мощности (выпрямленный ток более 10 А);

По конструкции - точечные, плоскостные.

Применяемые полупроводниковые материалы: германий, кремний, селен, титан.

По способу изготовления : сплавные, диффузионные (рисунок 1).

Рис. 1. Структуры выпрямительных диодов.

Рисунок 2. Примеры конструкции диода.

На рисунке 2 показаны примеры конструкций диодов с различным сопротивлением: (слева-1,2-малой мощности) Rт = (100-200) °/Вт,
(справа-3-средней мощности) Rт = 1-10°/Вт.

Вольт-амперная характеристика выпрямительного диода.

Рисунок 3. ВАХ выпрямительного диода.

При электротехническом анализе схем с диодами отдельные ветви ВАХ представляют в виде прямых линий, что позволяет представить диод в виде различных эквивалентных схем. Выбор той или иной схемы замещения диода определяется конкретными условиями анализа и расчета устройства, включающего диоды.

Рисунок 4.1.

Рисунок 4.2.

Работа диода на активную нагрузку представлена на рисунке 4.1. Ток через диод описывается его вольтамперной характеристикой iд = f(uд) , ток через нагрузочное сопротивление, поскольку соединение последовательное, будет равен току через диод iд = iн = i и для него справедливо соотношение iн = (u(t) - uд)/Rн. На рисунке 4.2 в одном масштабе показаны линии, описывающие обе эти функциональные зависимости: ВАХ диода и нагрузочную характеристику.

Рисунок 4.3.

На рисунке 4.3 показано, что, чем круче характеристика диода и чем меньше зона малых токов ("пятка"), тем лучше выпрямительные свойства диода. Заход рабочей точки в предпробойную область приводит не только к выделению в диоде большой мощности и возможному его разрушению, но и к потере выпрямительных свойств.

Основными параметрами , характеризующими выпрямительные диоды, являются

Максимальный прямой ток I пр max (0.01…10 А);

Падение напряжения на диоде при заданном значении прямого тока I пр

(U пр » 0.3...0,7 В для германиевых диодов и U пр » 0,8...1,2 В -для кремниевых);

Максимально допустимое постоянное обратное напряжение диода U обр max ;

Обратный ток I обр при заданном обратном напряжении U обр (значение обратного тока германиевых диодов на два -три порядка больше, чем у кремниевых) (0.005…150 мА).;

Барьерная емкость диода при подаче на него обратного напряжения некоторой величины;

Диапазон частот, в котором возможна работа диода без существенного снижения выпрямленного тока;

Рабочий диапазон температур (германиевые диоды работают в диапазоне

60...+70°С, кремниевые - в диапазоне -60...+150°С, что объясняется малыми обратными токами кремниевых диодов).

2. Уравнения коллекторных токов.

Для схемы включения с ОБ.

Выражение для идеализированной выходной характеристики в активном режиме имеет вид:

i К =α · i Э + I КБ0 .

Для схемы включения с ОЭ.

Выражение для идеализированной выходной характеристики в активном режиме имеет вид:

i К = · i Б + I КЭ0 .

Если разорвать цепь эмиттера, то под действием обратного напряжения на коллекторе через коллекторный переход из коллектора в базу будет протекать обратный ток I КБ0 . Его величина приводится в справочных данных транзистора.

I КЭ0 =α·I КБ0 - называется сквозным тепловым током транзистора.

Схема с общим эмиттером (ОЭ).

Такая схема изображена на рисунке 5.

Рис. 5. Схема включения транзистора с общим эмиттером

Усилительные свойства транзистора характеризует один из главных его параметров - статический коэффициент передачи тока базы или статический коэффициент усиления по току β . Поскольку он должен характеризовать только сам транзистор, его определяют в режиме без нагрузки (R к = 0).

Численно он равен:

при U к-э = const

Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент k i всегда меньше, чем β, т. к. при включении нагрузки ток коллектора уменьшается.

Схема с общей базой (ОБ) .

Схема ОБ изображена на рисунке 6.

Рис. 6. Схема включения транзистора с общей базой.

Статический коэффициент передачи тока для схемы ОБ обозначается α и определяется:

при U к-б = const

Этот коэффициент всегда меньше 1 и чем он ближе к 1, тем лучше транзистор.

Соотношения для коэффициентов передачи по току для схем ОБ и ОЭ имеют вид:

K iб = i к /i э = α, K iэ = i к /i б = α./(1- α.)

Коэффициент α > 1 и составляет 49 - 200.

Выпрямительный диод — это прибор проводящий ток только в одну сторону. В основе его конструкции один p-n переход и два вывода. Такой диод изменяет ток переменный на постоянный. Помимо этого, их повсеместно практикуют в электросхемах умножения напряжения, цепях, где отсутствуют жесткие требования к параметрам сигнала по времени и частоте.

  • Принцип работы
  • Основные параметры устройств
  • Выпрямительные схемы
  • Импульсные приборы
  • Импортные приборы

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение - Si) и германиевые (обозначение - Ge). У первых рабочая температура выше. Преимущество вторых - малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

  • Первый элемент – обозначение материала из которого он выполнен;
  • Второй определяет подкласс;
  • Третий обозначает рабочие возможности;
  • Четвертый является порядковым номером разработки;
  • Пятый – обозначение разбраковки по параметрам.

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.

ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Он отражает качество выпрямителя.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

  • Наибольшее значение среднего прямого тока;
  • Наибольшее допустимое значение обратного напряжения;
  • Максимально допустимая частота разности потенциалов при заданном прямом токе.

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

  • Приборы малой мощности. У них значение прямого тока до 300 мА;
  • Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А;
  • Силовые (большой мощности). Значение более 10 А.

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

  • Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт;
  • Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.

Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.

Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

  • Максимальные импульсные прямые (обратные) напряжения, токи;
  • Период установки прямого напряжения;
  • Период восстановления обратного сопротивления прибора.

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Для контроля направления электрического тока необходимо применять разные радио и электро детали. В частности, современная электроника использует с такой целью полупроводниковый диод, его применение обеспечивает ровный ток.

Устройство

Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.

Фото – полупроводниковый диод

Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:


Фото – обозначение диода

Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.

Основные преимущества полупроводникового диода:

  1. Полная взаимозаменяемость;
  2. Отличные пропускные параметры;
  3. Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.

Маркировка

Маркировка полупроводникового диода представляет собой аббревиатуру от основных параметров устройства. Например, КД196В – кремниевый диод с напряжением пробоя до 0,3 В, напряжением 9,6, модель третьей разработки.

Исходя из этого:

  1. Первая буква определяет материал, из которого изготовлен прибор;
  2. Наименование устройства;
  3. Цифра, определяющая назначение;
  4. Напряжение прибора;
  5. Число, которое определяет прочие параметры (зависит от типа детали).

Видео: применение диодов

Принцип работы

Полупроводниковые или выпрямительные диоды имеют довольно простой принцип работы. Как мы уже говорили, диод изготовлен из кремния таким образом, что один его конец p-типа, а другой конец типа n. Это означает, что оба контакта имеют различные характеристики. На одном наблюдается избыток электронов, в то время как другой имеет избыток отверстий. Естественно, в устройстве есть участок, в котором все электроны заполняют определенные пробелы. Это означает, что внешние заряды отсутствуют. В связи с тем, что эта область обедняется носителями заряда и известна как объединяющий участок.


Фото – принцип работы

Несмотря на то, что объединяющий участок очень мал, (часто его размер составляет несколько тысячных долей миллиметра), ток не может протекать в нем в обычном режиме. Если напряжение подается так, что площадь типа p становится положительной, а тип n, соответственно, отрицательной, отверстия переходят к отрицательному полюсу и помогают электронам перейти через объединяющий участок. Точно так же электроны движутся к положительному контакту и как бы обходят объединительный. Несмотря на то, что все частицы движутся с разным зарядом в разном направлении, в итоге они образуют однонаправленный ток, что помогает выпрямить сигнал и предупредить скачки напряжения на контактах диода.

Если напряжение прикладывается к полупроводниковому диоду в противоположном направлении, ток не будет проходить по нему. Причина заключается в том, что отверстия привлекаются отрицательным потенциалом, который находится в области р-типа. Аналогично электроны притягиваются к положительному потенциалу, который применяется к области n-типа. Это заставляет объединяющий участок увеличиваться в размере, из-за чего поток направленных частиц становится невозможным.


Фото – характеристики полупроводников

ВАХ-характеристики

Вольт амперная характеристика полупроводникового диода зависит от материала, из которого он изготовлен и некоторых параметров. Например, идеальный полупроводниковый выпрямитель или диод имеет следующие параметры:

  1. Сопротивление при прямом подключении – 0 Ом;
  2. Тепловой потенциал – VG = +-0,1 В.;
  3. На прямом участке RD > rD, т. е. прямое сопротивление больше, чем дифференциальное.

Если все параметры соответствуют, то получается такой график:


Фото – ВАХ идеального диода

Такой диод использует цифровая электротехника, лазерная индустрия, также его применяют при разработке медицинского оборудования. Он необходим при высоких требованиях к логическим функциям. Примеры – лазерный диод, фотодиод.

На практике, эти параметры очень отличаются от реальных. Многие приборы просто не способны работать с такой высокой точностью, либо такие требования не нужны. Эквивалентная схема характеристики реального полупроводника демонстрирует, что у него есть серьезные недостатки:


Фото – ВАХ в реальном полупроводниковом диоде

Данная ВАХ полупроводникового диода говорит о том, что во время прямого включения, контакты должны достигнуть максимального напряжения. Тогда полупроводник откроется для пропуска электронных заряженных частиц. Эти свойства также демонстрируют, что ток будет протекать нормально и без перебоев. Но до момента достижения соответствия всех параметров, диод не проводит ток. При этом у кремниевого выпрямителя вольтаж варьируется в пределах 0,7, а у германиевого – 0,3 Вольт.

Работа прибора очень зависит от уровня максимального прямого тока, который может пройти через диод. На схеме он определяется ID_MAX. Прибора так устроен, что во время включения прямым путем, он может выдержать только электрический ток ограниченной силы. В противном случае, выпрямитель перегреется и перегорит, как самый обычный светодиод. Для контроля температуры используются разные виды устройств. Естественно, некоторые из них влияют на проводимость, но зато продлевают работоспособность диода.

Еще одним недостатком является то, что при пропуске переменного тока, диод не является идеальным изолирующим устройством. Он работает только в одном направлении, но всегда нужно учитывать ток утечки. Его формула зависит от остальных параметров используемого диода. Чаще всего схемы его обозначают, как I OP . Исследование независимых экспертов установило, что германиевые пропускают до 200 µА, а кремниевые до 30 µА. При этом многие импортные модели ограничиваются утечкой в 0.5 µА.


Фото – отечественные диоды

Все разновидности диодов поддаются напряжению пробой. Это свойство сети, которое характеризуется ограниченным напряжением. Любой стабилизирующий прибор должен его выдерживать (стабилитрон, транзистор, тиристор, диодный мост и конденсатор). Когда внешняя разница потенциалов контактов выпрямительного полупроводникового диода значительно выше ограниченного напряжения, то диод становится проводником, в одну секунду снижая сопротивление до минимума. Назначение устройства не позволяет ему делать такие резкие скачки, иначе это исказить ВАХ.

Поделиться