Возможные схемы включения человека в электрическую сеть. Сущность шагового напряжения

1) Однофазное прикосновение к проводу сети с изолированной нейтралью при исправной изоляции (рис.1):

Рисунок 1 - Однофазное включение человека в электрическую сеть.

Ток, проходящий через человека I h , возвращается к источнику тока через изоляцию проводов сети, которая в исправном состоянии обладает большим сопротивлением изоляции R из. До 1000В R из равна 0,5 МОм и больше. Ток, протекающий через тело человека, определяется выражением:

(1)

где R h - сопротивление тела человека, при расчетах берется 1000 Ом;

R из - сопротивление изоляции фаз относительно земли;

U ф - фазное напряжение

С учетом сопротивление обуви R об и пола R п, включенных последовательно сопротивлению тела человека R h , ток, проходящий через человека, будет равен:

(2)

2) Однофазное прикосновение к проводу сети с заземленной нейтралью (рис.2):

Рисунок 2 - Однофазное прикосновение к сети с заземленной нейтралью

Величина тока через человека определяется только сопротивлением тела человека, величины сопротивлений изоляции проводов не влияют на ток, проходящий через тело человека.

, (3)

где R 0 - сопротивление заземления нейтрали. При Uл= 380 В R 0 не превышает 4 0м, то им при расчетах можно пренебречь. В этом случае сопротивление пола и обуви играют большую роль в безопасности человека, т.к. включены в цепь с человеком последовательно.

(4)

При R п = 0 и R об = 0

I h = = 0,22 А = 220 мА > 100 мА >> 10 мА ,

это очень опасно!

При замыкании фазы на землю сеть с изолированной нейтралью (рис. 4) оказывается более опасной, чем с заземленной (рис. 5). Так как, в сети с изолированной нейтралью напряжение, обуславливающее величину тока через тело человека равно U л, а в сети с заземлённой нейтралью оно лежит в пределах:

U л >U пр >U ф

Рисунок 4 - Сеть с изолированной нейтралью

I h = , (7)

где R h - сопротивление тела человека;

R зм - сопротивление замыкания фазы земли

В случае пробоя фазы на корпус оборудования, которое в нормальных условиях не должно находится под напряжением, человек, работающий с этим оборудованием, оказывается в режиме однофазного прикосновения. Для защиты от поражения электрическим током в сети с изолированной нейтралью применяется защитное заземление (рис. 6).

Рисунок 5 - Сеть с заземленной нейтралью

Защитное заземление

Защитное заземление выполняется с целью обеспечения безопасности людей при нарушении изоляции токоведущих частей. Применяется также заземление для защиты от действия атмосферного электричества электрооборудования, зданий и сооружений.

Защитным заземлением называется преднамеренное соединение с землей или ее эквивалентом металлических частей оборудования, в обычных условиях находящихся не под напряжением, но могущих оказаться под напряжением вследствие нарушения изоляции электроустановок.

Действие защитного заземления заключается в том, что оно снижает напряжение между корпусом оборудования, оказавшимся под напряжением, и землей до безопасного значения.

Поясним это на примере сети с изолированной нейтралью (рис. 6). Если корпус электрооборудования не заземлен и он оказался в контакте с фазой, то прикосновение человека к такому корпусу равносильно однофазному включению. Если же корпус заземлен, то потенциал корпуса относительно земли падает до безопасно малого значения.

Рисунок 6 - Защитное заземление

Заземлять необходимо металлические части электроустановок, корпуса электрических машин, трансформаторов, аппаратов, светильников, приводы электрических аппаратов, вторичные обмотки измерительных трансформаторов, каркасы распределительных щитов, щитов управления, шкафов и др.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше – с любым режимом нейтрали (рис. 3.18).

Большой процент травм, вызванных воздействием электрического тока, имеет место при прикосновении человека к металлическим частям или корпусам электроустановок, случайно оказавшимся под напряжением вследствие неисправности изоляции.

Тяжесть электротравмы зависит от тока, протекающего через тело человека, частоты тока, физиологического состояния организма, продолжительности воздействия тока, пути тока в организме и производственных условий.

При этом человек оказывается под напряжением прикосновения - напряжением между двумя точками цепи тока замыкания на землю (на корпус) при одновременном к ним прикосновении

где - ток, протекающий через тело человека, А;

-сопротивление тела человека, Ом.

Предельно допустимые значения напряжений прикосновения и токов, протекающих через тело человека, предназначенные для проектирования способов и средств защиты людей, при взаимодействии их с электроустановками нормируются /2/ и при аварийном режиме производственных электроустановок напряжением до 1000 В переменного 50 Гц тока при продолжительности воздействия свыше 1 с не должны превышать
= 20 В и= 6 мА.

Значения напряжений прикосновения и тока, протекающего через тело человека, зависят от ряда факторов: схемы включения человека в электрическую сеть, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей от земли, а также емкости токоведущих частей относительно земли и т.п. Эту зависимость необходимо знать при оценке той или иной сети по условиям техники безопасности, выборе и расчете соответствующих мер защиты и т.п.

При этом принимаем, что сопротивление основания, на котором стоит человек (грунт, пол и пр.), а также сопротивление его обуви незначительны, и равны нулю.

Сопротивление тела человека изменяется в широких пределах (от 400 до 100000 Ом) в зависимости от состояния кожи (сухая, влажная, чистая, поврежденная и т.п.), плотности контакта, площади контакта, тока, протекающего через тело человека и напряжения прикосновения, а также от времени воздействия тока на человека.

При напряжении до 1000 В в нашей стране применяют, в основном, две схемы сетей трехфазного тока - четырехпроводную с заземленной нейтралью напряжением 220/127, 380/220 и 660/380 В и трехпроводную с изолированной нейтралью напряжением 36, 42, 127, 220, 380 и 660 В.

Проанализируем опасность поражения током при нормальном режиме работы сетей.

2.1. Трехфазная четырехпроводная сеть с глухозаземленной нейтралью

Рассмотрим сеть напряжением 380/220 В (рис.1).

Прикосновение человека к корпусу электроустановки, оказавшемуся под напряжением, в четырехпроводной сети

При нормальном режиме работы сети сопротивление изоляции фазных и нулевого проводов относительно земли по сравнению с сопротивлением заземления нейтрали имеют весьма большие значения и с некоторым допущением могут быть приравнены к бесконечности, т.е.
.

В этом случае ток, протекающий через тело человека

где = 220 В - фазное напряжение, т.е. в данном случае напряжение между началом и концом одной обмотки трансформатора.

- сопротивление заземляющего устройства, к которому присоединена нейтраль трансформатора, Ом.

В соответствии с ПУЭ /1/ наибольшее значение составляет 66 Ом; сопротивление же тела человека, не опускается ниже нескольких сотен Ом. Следовательно, без большой ошибки можно пренебречь значением, т.е.

Таким образом, про прикосновении к корпусу электроустановка, оказавшемуся под напряжением в сети с глухозаземленной нейтралью, человек оказывается практически, под фазным напряжением, т.е. в данном случае под напряжением между фазным и нулевым проводом.

Анализ условий электробезопасности

Анализ условий электробезопасности заключается в определении величины тока через тело человека (I h) для конкретного случая.

Сравнивая полученные расчетным путем величины тока через тело человека с величиной условно безопасного тока (10мА) делают вывод об опасности данного случая. Если величина тока через тело человека превышает величину условно-безопасного тока - случай считают опасным. Если нет - не опасным. Так как человек в большинстве случаев пользуется сетью до 1000В, а эти сети, как правило, имеют небольшую протяженность, емкостью фазных проводов относительно земли можно пренебречь, считая, что сопротивление изоляции проводов (R из) относительно земли чисто активным.

Определить величину тока через тело человека можно так:

I h = U пр / R h

Сложность расчета заключается в нахождении напряжения прикосновения (U пр). Для нахождения этой величины прибегают к такому приему: определяют путь тока через тело человека, из которого и находят источник напряжения и сопротивления, через которые протекает ток.

Наиболее характерным бывают две схемы включения: между двумя проводами и между одним проводом и землей.

Применительно к сетям переменного тока первую схему обычно называют двухфазным включением, а вторую однофазным.

9.1.1. Двухфазное включение

Двухфазное включение, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение – линейное, и поэтому через тело человека пойдет большой ток (рисунок. 9.1.).

Рисунок 9.1. Двухфазное включение человека в сеть.

где, I h – ток через тело человека

U пр - напряжение прикосновения

Для сети 380/220

Ток опасный для жизни человека

9.1.2. Однофазное включение.

Однофазное включение происходит значительно чаще, но является менее опасным, т.к. напряжение под которым оказывается человек не превышает фазного. Кроме того, на значение тока через тело человека влияет также режим нейтрали источника тока, сопротивление изоляции проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление обуви человека и другие факторы.

9.1.2.1. Однофазная сеть.

Рисунок 9.3. Схема включения

Рисунок 9.4. Схема замещения

Ток через тело человека можно найти как:

Из выражения можно сделать выводы:



1. Чем больше сопротивление изоляции относительно земли, тем меньше опасность однофазного прикосновения к проводу

2. Прикосновение человека к проводу с большим сопротивлением изоляции более опасно, т.к. напряжение прикосновение будет больше.

9.1 1.2. Трехфазная трехпроводная сеть с изолированной нейтралью:

Рассмотрим два режима сети:

а) Нормальный режим работы (сопротивление изоляции имеют большое (нормированное) значение.

Рисунок 9.5. Однофазное включение в 3 х фазную сеть

с изолированной нейтралью

При равенстве сопротивлений изоляцииR из1 =R из2 =R из3 , величина тока через тело человека определяется выражением

В таких сетях опасность для человека, прикоснувшегося к проводу, при нормальном состоянии сети, зависит от сопротивления изоляции. Чем оно больше, тем меньше опасность. Поэтому, очень важно в таких сетях обеспечивать высокое сопротивление изоляции и контролировать ее состояние для своевременного выявления и устранения возникших неисправностей.

Согласно ПЭУ сопротивление изоляции проводов относительно земли в установках до 1000В не должно быть менее 500к.

б) При аварийном режиме - замыкание одной из фаз на землю через малое сопротивление замыкания - R зм.(рисунок 9.6.)

Рисунок 9.6 Аварийный режим в сети

Обычно R зм лежит в пределах от 50 до 200Ом.

Ток через тело человека, как и в нормальном режиме будет протекать и через сопротивления изоляции проводов относительно земли, но его величина будет значительно меньше, чем ток, протекающий через малое сопротивление замыкания. Поэтому величиной тока, протекающего через сопротивление изоляции, можно пренебречь и считать, что ток протекает только через сопротивление замыкания и тело человека.

Это очень опасно.

9.1.2.3. Трехфазная трехпроводная сеть с глухозаземленной нейтралью:

Глухозаземленной называется нейтраль трансформатора или генератора присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, трансформатор тока).

а) Нормальный режим работы

Рисунок 9.7.

Сопротивление заземления нейтрали R о нормируется в зависимости от максимального напряжения сети.

При U л =660В, R о =2Ом, при U л =380В, R о =4Ом, при U л =220В, R о =8Ом

Током, протекающим через тело человека и сопротивлением изоляции проводов можно пренебречь, по сравнению с током, протекающим через тело человека и малое сопротивление заземления нейтрали. Величина этого тока определяется из выражения:

Из выражения видно, что в сети с глухозаземленной нейтралью в период нормальной работы сети прикосновение к одному из проводов более опасно, чем прикосновение к проводу нормально работающей сети с изолированной нетралью.

б) При аварийном режиме работы - когда одна из фаз сети замкнута на землю через малое сопротивление R зм (рисунок 9.8.).

Рисунок 9.8.

Если провести анализ этого случая, то можно сделать следующие выводы:

2. Если принять R о равным 0, то человек окажется под фазным напряжением.

В реальных условиях R зм и R о всегда больше нуля, следовательно, человек, касаясь провода в аварийном режиме сети, попадает под напряжение меньше линейного, но больше фазного.

Схемы включения человека в цепь тока могут быть различными:

· между двумя проводами;

· между проводом и землей;

· между двумя проводами и землей одновременно и т.п.

Однако наиболее характерными являются первые две схемы. Применительно к трехфазным сетям переменного тока первую схему обычно называют двухфазным включением, а вторую – однофазным.

Двухфазное включение, т.е. прикосновение человека одновременно к двум фазам (рис. 11.3.), как правило, более опасно, чем однофазное, поскольку к телу человека прикладывается наибольшее в данной сети напряжение – линейное, и поэтому через человека пойдет больший ток, сила которого определяется по формуле:

где I ч – сила тока, проходящего через тело человека, А; U л = 1,73 U ф – линейное напряжение, т.е. напряжение между фазными проводами сети, в; U ф – фазное напряжение, В; R ч – сопротивление тела человека, Ом.

Рис. 11.3 Схема двухфазного включения

человека в цепь тока в трехфазной сети

Нетрудно видеть, что при двухфазном включении ток, проходящий через человека, практически не зависит от режима нейтрали сети, следовательно, двухфазное включение является одинаково опасным в сети как с изолированной, так и с заземленной нейтралями.

Однофазное включение происходит значительно чаще, нo оно менее опасно, чем двухфазное, поскольку напряжение, под которым оказывается человек, не превышает фазного, т.е. меньше линейного в 1,73 раза. Кроме того, на значение этого тока влияют также режим нейтрали источника тока, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

В сети с заземленной нейтралью (рис. 11.4) последовательно с сопротивлением тела человека (R ч) оказываются включенными сопротивление обуви (R об), сопротивление пола (R n) и сопротивление заземления нейтрали источника тока (R о).

Рис. 11.4 Схема однофазного включения человека в цепь тока в трехфазной четырехпроводной сети с заземленной нейтралью

С учетом этих сопротивлений сила тока (I ч), проходящего через человека, будет отделяться по формуле:

I ч = ,

где R ч – сопротивление тела человека, Ом; R об – сопротивление обуви, Ом; R n – сопротивление пола, Ом; R о – сопротивление заземления нейтрали, Ом.

В сети с изолированной нейтралью (рис.


11.5.), ток, проходящий через человека, возвращается к источнику тока через изоляцию проводов, которая обладает большим сопротивлением. Значение силы тока, проходящего через человека, определяется для этого случая по формуле:

I ч = ,

где R из – сопротивление изоляции одной фазы сети относительно земли, Ом.

В сети с изолированной нейтралью условия безопасности находятся в прямой зависимости не только от сопротивления пола и обуви, но и от сопротивления изоляции проводов относительно земли: чем лучше изоляция, тем меньше ток, протекающий через человека.

Рис. 11.5 Схема однофазного включения человека в цепь тока в трехфазной сети с изолированной нейтралью

Таким образом, при прочих равных условиях однофазное включение человека в сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью. Этот вывод справедлив дня нормальных (безаварийных) условий работы сети. В случае же аварии, когда одна из фаз замкнута на землю, сеть с изолированной нейтралью может оказаться более опасной, так как вследствие старения изоляции, увлажнения и при других неблагоприятных условиях сопротивление изоляции снижается. В результате этого напряжение между любой неповрежденной фазой и землей может увеличиться с фазного до линейного, в то время как в сети с заземленной нейтралью напряжение неповрежденных фаз относительно земли практически не возрастает, т.е. остается в пределах фазного.

Таким образом, безопасность человека обеспечивается высоким качеством изоляции, которое контролируется в процессе профилактических испытаний. Периодический контроль изоляции заключается в том, чтобы определить сопротивление изоляции каждой фазы относительно земли и между фазами на каждом участке, между двумя последовательно установленными предохранителями, аппаратами или за последним предохранителем.

Электрическая изоляция силовой или осветительной электропроводки считается достаточной, если ее сопротивление между проводом каждой фазы и землей, или между разными фазами на участке, ограниченном последовательно включенными плавкими предохранителями, составляет не менее 0,5 МОм (согласно правилам устройства электроустановок).

Анализ опасности поражения практически сводится к определению значения тока, протекающего через тело человека в различных условиях, в которых он может оказаться при эксплуатации электроустановок, или напряжения прикосновения. Опасность поражения зависит от ряда факторов: схемы включения человека в электрическую цепь, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей от земли, емкости токоведущих частей относительно земли и т. п.

Каковы схемы включения человека в электрическую цепь?

Наиболее характерными являются две схемы включения: между двумя фазами электрической сети, между одной фазой и землей. Кроме того, возможно прикосновение к заземленным нетоковедущим частям, оказавшимся под напряжением, а также включение человека под шаговое напряжение.

Что называется нейтралью трансформатора (генератора) и каковы режимы ее работы?

Точка соединения обмоток питающего трансформатора (генератора) называется нейтральной точкой, или нейтралью. Нейтраль источника питания может быть изолированная и заземленная.

Заземленной называется нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

Изолированной называется нейтраль генератора или трансформатора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы).

Что положено в основу выбора режима нейтрали?

Выбор схемы сети, а следовательно, и режима нейтрали источника тока производят исходя из технологических требований и условий безопасности.

При напряжении до 1000 В широкое распространение получили обе схемы трехфазных сетей: трехпроводная с изолированной нейтралью и четырехпроводная с заземленной нейтралью.

По технологическим требованиям предпочтение часто отдается четырехпроводной сети, она использует два рабочих напряжения - линейное и фазное. Так, от четырехпроводной сети 380 В можно питать как силовую нагрузку - трехфазную, включая ее между фазными проводами на линейное напряжение 380 В, так и осветительную, включая ее между фазным и нулевым проводами, т. е. на фазное напряжение 220 В. При этом становится значительно дешевле электроустановка за счет применения меньшего числа трансформаторов, меньшего сечения проводов и т. п.

По условиям безопасности выбирают одну из двух сетей исходя из положения: по условиям прикосновения к фазному проводу в период нормального режима работы сети более безопасной является сеть с изолированной нейтралью, а в аварийный период - сеть с заземленной нейтралью. Поэтому сети с изолированной нейтралью целесообразно применять, когда имеется возможность поддерживать высокий уровень изоляции сети и когда емкость сети относительно земли незначительна. Это могут быть мало разветвленные сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала. Примером могут служить сети небольших предприятий, передвижные установки.

Сети с заземленной нейтралью применяют там, где невозможно обеспечить хорошую изоляцию электроустановок (из-за высокой влажности, агрессивной среды и пр.) или нельзя быстро отыскать и устранить повреждение изоляции, когда емкостные токи сети вследствие значительной ее разветвленности достигают больших значений, опасных для жизни человека. К таким сетям относятся сети крупных промышленных предприятий, городские распределительные и пр.

Существующее мнение о более высокой степени надежности сетей с изолированной нейтралью недостаточно обоснованно.

Статистические данные указывают, что по условиям надежности работы обе сети практически одинаковы.

При напряжении выше 1000 В вплоть до 35 кВ сети по технологическим причинам имеют изолированную нейтраль, а выше 35 кВ - заземленную.

Поскольку такие сети имеют большую емкость проводов относительно земли, для человека одинаково опасно прикосновение к проводу сети как с изолированной, так и с заземленной нейтралью. Поэтому режим нейтрали сети выше 1000 В по условиям безопасности не выбирается.

Какова опасность двухфазного прикосновения?

Под двухфазным прикосновением понимается одновременное прикосновение к двум фазам электроустановки, находящейся под напряжением (рис. 1).

Рис. 1. Схема двухфазного прикосновения человека к сети переменного тока

Двухфазное прикосновение более опасно. При двухфазном прикосновении ток, проходящий через тело человека по одному из самых опасных для организма путей (рука-рука), будет зависеть от прикладываемого к телу человека напряжения, равного линейному напряжению сети, а также от сопротивления тела человека:


  • U л - линейное напряжение, т. е. напряжение между фазными проводами сети;
  • R чел - сопротивление тела человека.

В сети с линейным напряжением U л = 380 В при сопротивлении тела человека R чел = 1000 Ом ток, проходящий через тело человека, будет равен:

Этот ток для человека смертельно опасен. При двухфазном прикосновении ток, проходящий через тело человека, практически не зависит от режима нейтрали сети. Следовательно, двухфазное прикосновение одинаково опасно как в сети с изолированной, так и с заземленной нейтралью (при условии равенства линейных напряжений этих сетей).

Случаи прикосновения человека к двум фазам происходят сравнительно редко.

Чем характеризуется однофазное прикосновение?

Однофазным прикосновением называется прикосновение к одной фазе электроустановки, находящейся под напряжением.

Оно происходит во много раз чаще, чем двухфазное прикосновение, но менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного. Соответственно меньше оказывается и ток, проходящий через тело человека. Кроме того, на этот ток большое влияние оказывают режим нейтрали источника тока, сопротивление изоляции проводов сети относительно земли, сопротивление пола (или основания), на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

Какова опасность однофазного прикосновения в сети с заземленной нейтралью?


Рис. 2. Схема прикосновения человека к одной фазе трехфазной сети с заземленной нейтралью

В сети с заземленной нейтралью (рис. 2) цепь тока, проходящего через тело человека, включает в себя сопротивления тела человека, его обуви, пола (или основания), на котором стоит человек, а также сопротивление заземления нейтрали источника тока. С учетом указанных сопротивлений ток, проходящий через тело человека, определяется из следующего выражения:


  • U ф - фазное напряжение сети, В;
  • R чел - сопротивление тела человека, Ом;
  • R об - сопротивление обуви человека, Ом;
  • R п - сопротивление пола (основания), на котором человек стоит, Ом;
  • R o - сопротивление заземления нейтрали источника тока, Ом.

При наиболее неблагоприятных условиях (человек, прикоснувшийся к фазе, имеет на ногах токопроводящую обувь - сырую или подбитую металлическими гвоздями, стоит на сырой земле или на проводящем основании - металлическом полу, на заземленной металлоконструкции), т. е. когда R об = 0 и R п = 0, уравнение принимает вид:


Поскольку сопротивление нейтрали R o обычно во много раз меньше сопротивления тела человека, то им можно пренебречь. Тогда


Однако при этих условиях и однофазное прикосновение, несмотря на меньший ток, весьма опасно. Так, в сети с фазным напряжением U ф = 220 В при R чел = 1000 Ом ток, проходя через тело человека, будет иметь значение:

Такой ток смертельно опасен для человека.

Если человек имеет на ногах непроводящую обувь (например, резиновые галоши) и стоит на изолирующем основании (например, на деревянном полу), то

  • 45 000 - сопротивление обуви человека, Ом;
  • 100 000 - сопротивление пола, Ом.

Ток такой силы не опасен для человека.

Из приведенных данных видно, что для безопасности работающих в электроустановках большое значение имеют изолирующие полы и непроводящая ток обувь.

Каковы особенности однофазного прикосновения в сети с изолированной нейтралью?

В сети с изолированной нейтралью (рис. 3) ток, проходящий через тело человека в землю, возвращается к источнику тока через изоляцию проводов сети, которая в исправном состоянии обладает большим сопротивлением.

С учетом сопротивлений обуви R об и пола или основания R п, на котором стоит человек, включенных последовательно сопротивлению тела человека R чел, ток, проходящий через тело человека, определяется уравнением:


где R из - сопротивление изоляции одной фазы сети относительно земли, Ом.


Рис. 3. Схема прикосновения человека к одной фазе трехфазной сети с изолированной нейтралью

При наиболее неблагоприятном случае, когда человек имеет проводящую ток обувь и стоит на токопроводящем полу, т. е. при R об = 0 и R п = 0, уравнение значительно упростится:


Для этого случая в сети с фазным напряжением U ф = 220 В и сопротивлением изоляции фазы R из = 90 000 Ом при R чел = 1000 Ом ток, проходящий через человека, будет равен:

Этот ток значительно меньше тока (220 мА), вычисленного нами для случая однофазного прикосновения при аналогичных условиях, но в сети с заземленной нейтралью. Он определяется в основном сопротивлением изоляции проводов относительно земли.

Какая сеть является более безопасной - с изолированной или заземленной нейтралью?

При прочих равных условиях прикосновение человека к одной фазе сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью. Однако этот вывод справедлив лишь для нормальных (безаварийных) условий работы сетей, при наличии незначительной емкости относительно земли.

В случае же аварии, когда одна из фаз замкнута на землю, сеть с изолированной нейтралью может оказаться более опасной. Объясняется это тем, что при такой аварии в сети с изолированной нейтралью напряжение неповрежденной фазы относительно земли может возрасти с фазного до линейного, в то время как в сети с заземленной нейтралью повышение напряжения окажется незначительным.

Однако современные электрические сети ввиду их разветвленности и значительной протяженности создают большую емкостную проводимость между фазой и землей. В этом случае опасность прикосновения человека к одной и двум фазам практически одинакова. Каждое из этих прикосновений весьма опасно, так как ток, проходящий через тело человека, достигает очень больших значений.

Что такое напряжение шага?

Под напряжением шага понимается напряжение между двумя точками цепи тока, находящихся одна от другой на расстоянии шага, на которых одновременно стоит человек. Величина шага обычно принимается равной 0,8 м.

Для некоторых животных (лошади, коровы) величина напряжения шага больше, чем для людей, и путь тока захватывает грудную клетку. По этим причинам они более подвержены поражениям шаговым напряжением.

Шаговое напряжение возникает вокруг места перехода тока от поврежденной электроустановки в землю. Наибольшая величина будет около места перехода, а наименьшая - на расстоянии более 20 м, т. е. за пределами, ограничивающими поле растекания тока в грунте.

На расстоянии 1 м от заземлителя падение напряжения составляет 68% полного напряжения, на расстоянии 10 м - 92%, на расстоянии 20 м потенциалы точек настолько малы, что практически могут быть равны нулю.

Такие точки поверхности почвы считаются находящимися вне зоны растекания тока и называются «землей».

Опасность напряжения шага увеличивается, если человек, подвергшийся его воздействию, падает. И тогда напряженйе шага возрастает, так как путь тока проходит уже не через ноги, а через все тело.

Случаи поражения людей из-за воздействия напряжения шага относительно редки. Они могут произойти, например, вблизи упавшего на землю провода (в такие моменты до отключения линии нельзя допускать людей и животных на близкое расстояние к месту падения провода). Наиболее опасны напряжения шага при ударе молнии.

Оказавшись в зоне шагового напряжения, выходить из нее следует небольшими шагами в сторону, противоположную месту предполагаемого замыкания на землю, и в частности лежащего на земле провода.

Поделиться