Строение атмосферы земли по слоям. Атмосфера и мир атмосферных явлений

На уровне моря 1013,25 гПа (около 760 мм ртутного столба). Средняя по глобусу температура воздуха у поверхности Земли 15°С, при этом температура изменяется примерно от 57°С в субтропических пустынях до -89°С в Антарктиде. Плотность воздуха и давление убывают с высотой по закону, близкому к экспоненциальному.

Строение атмосферы . По вертикали атмосфера имеет слоистую структуру, определяемую главным образом особенностями вертикального распределения температуры (рисунок), которое зависит от географического положения, сезона, времени суток и так далее. Нижний слой атмосферы - тропосфера - характеризуется падением температуры с высотой (примерно на 6°С на 1 км), его высота от 8-10 км в полярных широтах до 16-18 км в тропиках. Благодаря быстрому убыванию плотности воздуха с высотой в тропосфере находится около 80% всей массы атмосферы. Над тропосферой располагается стратосфера - слой, который характеризуется в общем повышением температуры с высотой. Переходный слой между тропосферой и стратосферой называется тропопаузой. В нижней стратосфере до уровня около 20 км температура мало меняется с высотой (так называемая изотермическая область) и нередко даже незначительно уменьшается. Выше температура возрастает из-за поглощения УФ-радиации Солнца озоном, вначале медленно, а с уровня 34-36 км - быстрее. Верхняя граница стратосферы - стратопауза - расположена на высоте 50-55 км, соответствующей максимуму температуры (260-270 К). Слой атмосферы, расположенный на высоте 55-85 км, где температура снова падает с высотой, называется мезосферой, на его верхней границе - мезопаузе - температура достигает летом 150-160 К, а зимой 200-230 К. Над мезопаузой начинается термосфера - слой, характеризующийся быстрым повышением температуры, достигающей на высоте 250 км значений 800-1200 К. В термосфере поглощается корпускулярная и рентгеновская радиация Солнца, тормозятся и сгорают метеоры, поэтому она выполняет функцию защитного слоя Земли. Ещё выше находится экзосфера, откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от атмосферы к межпланетному пространству.

Состав атмосферы . До высоты около 100 км атмосфера практически однородна по химическому составу и средняя молекулярная масса воздуха (около 29) в ней постоянна. Вблизи поверхности Земли атмосфера состоит из азота (около 78,1% по объёму) и кислорода (около 20,9%), а также содержит малые количества аргона, диоксида углерода (углекислого газа), неона и других постоянных и переменных компонентов (смотри Воздух).

Кроме того, атмосфера содержит небольшие количества озона, оксидов азота, аммиака, радона и др. Относительное содержание основных составляющих воздуха постоянно во времени и однородно в разных географических районах. Содержание водяного пара и озона переменно в пространстве и времени; несмотря на малое содержание, их роль в атмосферных процессах весьма существенна.

Выше 100-110 км происходит диссоциация молекул кислорода, углекислого газа и водяного пара, поэтому молекулярная масса воздуха уменьшается. На высоте около 1000 км начинают преобладать лёгкие газы - гелий и водород, а ещё выше атмосфера Земли постепенно переходит в межпланетный газ.

Наиболее важная переменная компонента атмосферы - водяной пар, который поступает в атмосферу при испарении с поверхности воды и влажной почвы, а также путём транспирации растениями. Относительное содержание водяного пара меняется у земной поверхности от 2,6% в тропиках до 0,2% в полярных широтах. С высотой оно быстро падает, убывая наполовину уже на высоте 1,5-2 км. В вертикальном столбе атмосферы в умеренных широтах содержится около 1,7 см «слоя осаждённой воды». При конденсации водяного пара образуются облака, из которых выпадают осадки атмосферные в виде дождя, града, снега.

Важной составляющей атмосферного воздуха является озон, сосредоточенный на 90% в стратосфере (между 10 и 50 км), около 10% его находится в тропосфере. Озон обеспечивает поглощение жёсткой УФ-радиации (с длиной волны менее 290 нм), и в этом - его защитная роль для биосферы. Значения общего содержания озона меняются в зависимости от широты и сезона в пределах от 0,22 до 0,45 см (толщина слоя озона при давлении р= 1 атм и температуре Т = 0°С). В озоновых дырах, наблюдаемых весной в Антарктике с начала 1980-х годов, содержание озона может падать до 0,07 см. Оно увеличивается от экватора к полюсам и имеет годовой ход с максимумом весной и минимумом осенью, причём амплитуда годового хода мала в тропиках и растёт к высоким широтам. Существенной переменной компонентой атмосферы является углекислый газ, содержание которого в атмосфере за последние 200 лет выросло на 35%, что объясняется в основном антропогенным фактором. Наблюдается его широтная и сезонная изменчивость, связанная с фотосинтезом растений и растворимостью в морской воде (согласно закону Генри, растворимость газа в воде уменьшается с ростом её температуры).

Важную роль в формировании климата планеты играет атмосферный аэрозоль - взвешенные в воздухе твёрдые и жидкие частицы размером от нескольких нм до десятков мкм. Различаются аэрозоли естественного и антропогенного происхождения. Аэрозоль образуется в процессе газофазных реакций из продуктов жизнедеятельности растений и хозяйственной деятельности человека, вулканических извержений, в результате подъёма пыли ветром с поверхности планеты, особенно с её пустынных регионов, а также образуется из космической пыли, попадающей в верхние слои атмосферы. Большая часть аэрозоля сосредоточена в тропосфере, аэрозоль от вулканических извержений образует так называемый слой Юнге на высоте около 20 км. Наибольшее количество антропогенного аэрозоля попадает в атмосферу в результате работы автотранспорта и ТЭЦ, химических производств, сжигания топлива и др. Поэтому в некоторых районах состав атмосферы заметно отличается от обычного воздуха, что потребовало создания специальной службы наблюдений и контроля за уровнем загрязнения атмосферного воздуха.

Эволюция атмосферы . Современная атмосфера имеет, по-видимому, вторичное происхождение: она образовалась из газов, выделенных твёрдой оболочкой Земли после завершения формирования планеты около 4,5 млрд. лет назад. В течение геологической истории Земли атмосфера претерпевала значительные изменения своего состава под влиянием ряда факторов: диссипации (улетучивания) газов, преимущественно более лёгких, в космическое пространство; выделения газов из литосферы в результате вулканической деятельности; химических реакций между компонентами атмосферы и породами, слагающими земную кору; фотохимических реакций в самой атмосфере под влиянием солнечного УФ-излучения; аккреции (захвата) материи межпланетной среды (например, метеорного вещества). Развитие атмосферы тесно связано с геологическими и геохимическими процессами, а последние 3-4 миллиарда лет также с деятельностью биосферы. Значительная часть газов, составляющих современной атмосферы (азот, углекислый газ, водяной пар), возникла в ходе вулканической деятельности и интрузии, выносившей их из глубин Земли. Кислород появился в заметных количествах около 2 миллиардов лет тому назад как результат деятельности фотосинтезирующих организмов, первоначально зародившихся в поверхностных водах океана.

По данным о химическом составе карбонатных отложений получены оценки количества углекислого газа и кислорода в атмосфере геологического прошлого. На протяжении фанерозоя (последние 570 миллионов лет истории Земли) количество углекислого газа в атмосфере изменялось в широких пределах в соответствии с уровнем вулканической активности, температурой океана и уровнем фотосинтеза. Большую часть этого времени концентрация углекислого газа в атмосфере была значительно выше современной (до 10 раз). Количество кислорода в атмосфере фанерозоя существенно изменялось, причём преобладала тенденция к его увеличению. В атмосфере докембрия масса углекислого газа была, как правило, больше, а масса кислорода - меньше по сравнению с атмосферой фанерозоя. Колебания количества углекислого газа оказывали в прошлом существенное влияние на климат, усиливая парниковый эффект при росте концентрации углекислого газа, благодаря чему климат на протяжении основной части фанерозоя был гораздо теплее по сравнению с современной эпохой.

Атмосфера и жизнь . Без атмосферы Земля была бы мёртвой планетой. Органическая жизнь протекает в тесном взаимодействии с атмосферой и связанными с ней климатом и погодой. Незначительная по массе по сравнению с планетой в целом (примерно миллионная часть), атмосфера является непременным условием для всех форм жизни. Наибольшее значение из атмосферных газов для жизнедеятельности организмов имеют кислород, азот, водяной пар, углекислый газ, озон. При поглощении углекислого газа фотосинтезирующими растениями создаётся органическое вещество, используемое как источник энергии подавляющим большинством живых существ, включая человека. Кислород необходим для существования аэробных организмов, для которых приток энергии обеспечивается реакциями окисления органического вещества. Азот, усваиваемый некоторыми микроорганизмами (азотофиксаторами), необходим для минерального питания растений. Озон, поглощающий жёсткое УФ-излучение Солнца, значительно ослабляет эту вредную для жизни часть солнечной радиации. Конденсация водяного пара в атмосфере, образование облаков и последующее выпадение атмосферных осадков поставляют на сушу воду, без которой невозможны никакие формы жизни. Жизнедеятельность организмов в гидросфере во многом определяется количеством и химическим составом атмосферных газов, растворённых в воде. Поскольку химический состав атмосферы существенно зависит от деятельности организмов, биосферу и атмосферу можно рассматривать как часть единой системы, поддержание и эволюция которой (смотри Биогеохимические циклы) имела большое значение для изменения состава атмосферы на протяжении истории Земли как планеты.

Радиационный, тепловой и водный балансы атмосферы . Солнечная радиация является практически единственным источником энергии для всех физических процессов в атмосфере. Главная особенность радиационного режима атмосферы - так называемый парниковый эффект: атмосфера достаточно хорошо пропускает к земной поверхности солнечную радиацию, но активно поглощает тепловое длинноволновое излучение земной поверхности, часть которого возвращается к поверхности в форме встречного излучения, компенсирующего радиационную потерю тепла земной поверхностью (смотри Атмосферное излучение). В отсутствие атмосферы средняя температура земной поверхности была бы -18°С, в действительности она 15°С. Приходящая солнечная радиация частично (около 20%) поглощается в атмосферу (главным образом водяным паром, каплями воды, углекислым газом, озоном и аэрозолями), а также рассеивается (около 7%) на частицах аэрозоля и флуктуациях плотности (рэлеевское рассеяние). Суммарная радиация, достигая земной поверхности, частично (около 23%) отражается от неё. Коэффициент отражения определяется отражательной способностью подстилающей поверхности, так называемое альбедо. В среднем альбедо Земли для интегрального потока солнечной радиации близко к 30%. Оно меняется от нескольких процентов (сухая почва и чернозём) до 70-90% для свежевыпавшего снега. Радиационный теплообмен между земной поверхностью и атмосферой существенно зависит от альбедо и определяется эффективным излучением поверхности Земли и поглощённым ею противоизлучением атмосферы. Алгебраическая сумма потоков радиации, входящих в земную атмосферу из космического пространства и уходящих из неё обратно, называется радиационным балансом.

Преобразования солнечной радиации после её поглощения атмосферой и земной поверхностью определяют тепловой баланс Земли как планеты. Главный источник тепла для атмосферы - земная поверхность; теплота от неё передаётся не только в виде длинноволнового излучения, но и путём конвекции, а также выделяется при конденсации водяного пара. Доли этих притоков теплоты равны в среднем 20%, 7% и 23% соответственно. Сюда же добавляется около 20% теплоты за счёт поглощения прямой солнечной радиации. Поток солнечной радиации за единицу времени через единичную площадку, перпендикулярную солнечным лучам и расположенную вне атмосферы на среднем расстоянии от Земли до Солнца (так называемая солнечная постоянная), равен 1367 Вт/м 2 , изменения составляют 1-2 Вт/м 2 в зависимости от цикла солнечной активности. При планетарном альбедо около 30% средний по времени глобальный приток солнечной энергии к планете составляет 239 Вт/м 2 . Поскольку Земля как планета испускает в космос в среднем такое же количество энергии, то, согласно закону Стефана - Больцмана, эффективная температура уходящего теплового длинноволнового излучения 255 К (-18°С). В то же время средняя температура земной поверхности составляет 15°С. Разница в 33°С возникает за счёт парникового эффекта.

Водный баланс атмосферы в целом соответствует равенству количества влаги, испарившейся с поверхности Земли, количеству осадков, выпадающих на земную поверхность. Атмосфера над океанами получает больше влаги от процессов испарения, чем над сушей, а теряет в виде осадков 90%. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в атмосферу с океанов на континенты, равно объёму стока рек, впадающих в океаны.

Движение воздуха . Земля имеет шарообразную форму, поэтому к её высоким широтам приходит гораздо меньше солнечной радиации, чем к тропикам. Вследствие этого между широтами возникают большие температурные контрасты. На распределение температуры в существенной мере влияет также взаимное расположение океанов и континентов. Из-за большой массы океанических вод и высокой теплоёмкости воды сезонные колебания температуры поверхности океана значительно меньше, чем суши. В связи с этим в средних и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой - выше.

Неодинаковый разогрев атмосферы в разных областях земного шара вызывает неоднородное по пространству распределение атмосферного давления. На уровне моря распределение давления характеризуется относительно низкими значениями вблизи экватора, увеличением в субтропиках (пояса высокого давления) и понижением в средних и высоких широтах. При этом над материками внетропических широт давление зимой обычно повышено, а летом понижено, что связано с распределением температуры. Под действием градиента давления воздух испытывает ускорение, направленное от областей с высоким давлением к областям с низким, что приводит к перемещению масс воздуха. На движущиеся воздушные массы действуют также отклоняющая сила вращения Земли (сила Кориолиса), сила трения, убывающая с высотой, а при криволинейных траекториях и центробежная сила. Большое значение имеет турбулентное перемешивание воздуха (смотри Турбулентность в атмосфере).

С планетарным распределением давления связана сложная система воздушных течений (общая циркуляция атмосферы). В меридиональной плоскости в среднем прослеживаются две или три ячейки меридиональной циркуляции. Вблизи экватора нагретый воздух поднимается и опускается в субтропиках, образуя ячейку Хэдли. Там же опускается воздух обратной ячейки Феррела. В высоких широтах часто прослеживается прямая полярная ячейка. Скорости меридиональной циркуляции порядка 1 м/с или меньше. Из-за действия силы Кориолиса в большей части атмосферы наблюдаются западные ветры со скоростями в средней тропосфере около 15 м/с. Существуют сравнительно устойчивые системы ветров. К ним относятся пассаты - ветры, дующие от поясов высокого давления в субтропиках к экватору с заметной восточной составляющей (с востока на запад). Достаточно устойчивы муссоны — воздушные течения, имеющие чётко выраженный сезонный характер: они дуют с океана на материк летом и в противоположном направлении зимой. Особенно регулярны муссоны Индийского океана. В средних широтах движение воздушных масс имеет в основном западное направление (с запада на восток). Это зона атмосферных фронтов, на которых возникают крупные вихри - циклоны и антициклоны, охватывающие многие сотни и даже тысячи километров. Циклоны возникают и в тропиках; здесь они отличаются меньшими размерами, но очень большими скоростями ветра, достигающего ураганной силы (33 м/с и более), так называемые тропические циклоны. В Атлантике и на востоке Тихого океана они называются ураганами, а на западе Тихого океана - тайфунами. В верхней тропосфере и нижней стратосфере в областях, разделяющих прямую ячейку меридиональной циркуляции Хэдли и обратную ячейку Феррела, часто наблюдаются сравнительно узкие, в сотни километров шириной, струйные течения с резко очерченными границами, в пределах которых ветер достигает 100-150 и даже 200 м/с.

Климат и погода . Различие в количестве солнечной радиации, приходящей на разных широтах к разнообразной по физическим свойствам земной поверхности, определяет многообразие климатов Земли. От экватора до тропических широт температура воздуха у земной поверхности в среднем 25-30°С и мало меняется в течение года. В экваториальном поясе обычно выпадает много осадков, что создаёт там условия избыточного увлажнения. В тропических поясах количество осадков уменьшается и в ряде областей становится очень малым. Здесь располагаются обширные пустыни Земли.

В субтропических и средних широтах температура воздуха значительно меняется в течение года, причём разница между температурами лета и зимы особенно велика в удалённых от океанов областях континентов. Так, в некоторых районах Восточной Сибири годовая амплитуда температуры воздуха достигает 65°С. Условия увлажнения в этих широтах весьма разнообразны, зависят в основном от режима общей циркуляции атмосферы и существенно меняются от года к году.

В полярных широтах температура остаётся низкой в течение всего года, даже при наличии её заметного сезонного хода. Это способствует широкому распространению ледового покрова на океанах и суше и многолетнемёрзлых пород, занимающих в России свыше 65% её площади, в основном в Сибири.

За последние десятилетия стали всё более заметны изменения глобального климата. Температура повышается больше в высоких широтах, чем в низких; больше зимой, чем летом; больше ночью, чем днём. За 20 век среднегодовая температура воздуха у земной поверхности в России выросла на 1,5-2°С, причём в отдельных районах Сибири наблюдается повышение на несколько градусов. Это связывается с усилением парникового эффекта вследствие роста концентрации малых газовых примесей.

Погода определяется условиями циркуляции атмосферы и географическим положением местности, она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Более всего погода меняется в зонах смены воздушных масс, обусловленных прохождением атмосферных фронтов, циклонов и антициклонов, несущих осадки и усиление ветра. Данные для прогноза погоды собираются на наземных метеостанциях, морских и воздушных судах, с метеорологических спутников. Смотри также Метеорология.

Оптические, акустические и электрические явления в атмосфере . При распространении электромагнитного излучения в атмосфере в результате рефракции, поглощения и рассеяния света воздухом и различными частицами (аэрозоль, кристаллы льда, капли воды) возникают разнообразные оптические явления: радуга, венцы, гало, мираж и др. Рассеяние света обусловливает видимую высоту небесного свода и голубой цвет неба. Дальность видимости предметов определяется условиями распространения света в атмосфере (смотри Атмосферная видимость). От прозрачности атмосферы на различных длинах волн зависят дальность связи и возможность обнаружения объектов приборами, в том числе возможность астрономических наблюдений с поверхности Земли. Для исследований оптической неоднородностей стратосферы и мезосферы важную роль играет явление сумерек. Например, фотографирование сумерек с космических аппаратов позволяет обнаруживать аэрозольные слои. Особенности распространения электромагнитного излучения в атмосфере определяют точность методов дистанционного зондирования её параметров. Все эти вопросы, как и многие другие, изучает атмосферная оптика. Рефракция и рассеяние радиоволн обусловливают возможности радиоприёма (смотри Распространение радиоволн).

Распространение звука в атмосфере зависит от пространственного распределения температуры и скорости ветра (смотри Атмосферная акустика). Оно представляет интерес для зондирования атмосферы дистанционными методами. Взрывы зарядов, запускаемых ракетами в верхнюю атмосфера, дали богатую информацию о системах ветров и ходе температуры в стратосфере и мезосфере. В устойчиво стратифицированной атмосфере, когда температура падает с высотой медленнее адиабатического градиента (9,8 К/км), возникают так называемые внутренние волны. Эти волны могут распространяться вверх в стратосферу и даже в мезосферу, где они затухают, способствуя усилению ветра и турбулентности.

Отрицательный заряд Земли и обусловленное им электрическое поле атмосфера вместе с электрически заряженными ионосферой и магнитосферой создают глобальную электрическую цепь. Важную роль при этом играет образование облаков и грозового электричества. Опасность грозовых разрядов вызвала необходимость разработки методов грозозащиты зданий, сооружений, линий электропередач и связи. Особую опасность это явление представляет для авиации. Грозовые разряды вызывают атмосферные радиопомехи, получившие название атмосфериков (смотри Свистящие атмосферики). Во время резкого увеличения напряжённости электрического поля наблюдаются светящиеся разряды, возникающие на остриях и острых углах предметов, выступающих над земной поверхностью, на отдельных вершинах в горах и др. (Эльма огни). Атмосфера всегда содержит сильно меняющееся в зависимости от конкретных условий количество лёгких и тяжёлых ионов, которые определяют электрическую проводимость атмосферы. Главные ионизаторы воздуха у земной поверхности - излучение радиоактивных веществ, содержащихся в земной коре и в атмосфере, а также космические лучи. Смотри также Атмосферное электричество.

Влияние человека на атмосферу. В течение последних столетий происходил рост концентрации парниковых газов в атмосфере вследствие хозяйственной деятельности человека. Процентное содержание углекислого газа возросло с 2,8-10 2 двести лет назад до 3,8-10 2 в 2005 году, содержание метана - с 0,7-10 1 примерно 300- 400 лет назад до 1,8-10 -4 в начале 21 века; около 20% в прирост парникового эффекта за последнее столетие дали фреоны, которых практически не было в атмосфере до середины 20 века. Эти вещества признаны разрушителями стратосферного озона, и их производство запрещено Монреальским протоколом 1987 года. Рост концентрации углекислого газа в атмосфере вызван сжиганием всё возрастающих количеств угля, нефти, газа и других видов углеродного топлива, а также сведением лесов, в результате чего уменьшается поглощение углекислого газа путём фотосинтеза. Концентрация метана увеличивается с ростом добычи нефти и газа (за счёт его потерь), а также при расширении посевов риса и увеличении поголовья крупного рогатого скота. Всё это способствует потеплению климата.

Для изменения погоды разработаны методы активного воздействия на атмосферные процессы. Они применяются для защиты сельскохозяйственных растений от градобития путём рассеивания в грозовых облаках специальных реагентов. Существуют также методы рассеяния туманов в аэропортах, защиты растений от заморозков, воздействия на облака с целью увеличения осадков в нужных местах или для рассеяния облаков в моменты массовых мероприятий.

Изучение атмосферы . Сведения о физических процессах в атмосфере получают прежде всего из метеорологических наблюдений, которые проводятся глобальной сетью постоянно действующих метеорологических станций и постов, расположенных на всех континентах и на многих островах. Ежедневные наблюдения дают сведения о температуре и влажности воздуха, атмосферном давлении и осадках, облачности, ветре и др. Наблюдения за солнечной радиацией и её преобразованиями проводятся на актинометрических станциях. Большое значение для изучения атмосферы имеют сети аэрологических станций, на которых при помощи радиозондов выполняются метеорологические измерения до высоты 30-35 км. На ряде станций проводятся наблюдения за атмосферным озоном, электрическими явлениями в атмосфере, химическим составом воздуха.

Данные наземных станций дополняются наблюдениями на океанах, где действуют «суда погоды», постоянно находящиеся в определённых районах Мирового океана, а также метеорологическими сведениями, получаемыми с научно-исследовательских и других судов.

Всё больший объём сведений об атмосфере в последние десятилетия получают с помощью метеорологических спутников, на которых установлены приборы для фотографирования облаков и измерения потоков ультрафиолетовой, инфракрасной и микроволновой радиации Солнца. Спутники позволяют получать сведения о вертикальных профилях температуры, облачности и её водозапасе, элементах радиационного баланса атмосферы, о температуре поверхности океана и др. Используя измерения рефракции радиосигналов с системы навигационных спутников, удаётся определять в атмосфере вертикальные профили плотности, давления и температуры, а также влагосодержания. С помощью спутников стало возможным уточнить величину солнечной постоянной и планетарного альбедо Земли, строить карты радиационного баланса системы Земля - атмосферы, измерять содержание и изменчивость малых атмосферных примесей, решать многие другие задачи физики атмосферы и мониторинга окружающей среды.

Лит.: Будыко М. И. Климат в прошлом и будущем. Л., 1980; Матвеев Л. Т. Курс общей метеорологии. Физика атмосферы. 2-е изд. Л., 1984; Будыко М. И., Ронов А. Б., Яншин А. Л. История атмосферы. Л., 1985; Хргиан А. Х. Физика атмосферы. М., 1986; Атмосфера: Справочник. Л., 1991; Хромов С. П., Петросянц М. А. Метеорология и климатология. 5-е изд. М., 2001.

Г. С. Голицын, Н. А. Зайцева.

Формирование атмосферы. Сегодня атмосфера Земли представляет собой смесь газов - 78% азота, 21% кислорода и небольшого количества других газов,- например, двуокиси углерода. Но когда планета только возникла, в атмосфере не было кислорода - она состояла из газов, первоначально существовавших в Солнечной системе.

Земля возникла, когда небольшие каменные тела, состоящие из пыли и газа солнечной туманности и известные как планетоиды, сталкивались друг с другом и постепенно принимали форму планеты. По мере ее роста газы, заключенные в планетоидах, вырывались наружу и окутывали земной шар. Через некоторое время первые растения начали выделять кислород, и первозданная атмосфера развилась в нынешнюю плотную воздушную оболочку.

Зарождение атмосферы

  1. Дождь из мелких планетоидов обрушился на зарождающуюся Землю 4,6 миллиарда лет назад. Газы солнечной туманности, заключенные внутри планеты, при столкновении вырвались наружу и образовали примитивную атмосферу Земли, состоящую из азота, двуокиси углерода и водяного пара.
  2. Тепло, выделяющееся при образовании планеты, удерживается слоем плотных облаков первозданной атмосферы. «Парниковые газы» - такие, как двуокись углерода и водяной пар - останавливают излучение тепла в космос. Поверхность Земли залита бурлящим морем расплавленной магмы.
  3. Когда столкновения планетоидов стали не такими частыми, Земля начала охлаждаться и появились океаны. Водяной пар конденсируется из густых облаков, и дождь, продолжающийся несколько эпох, постепенно заливает низменности. Таким образом появляются первые моря.
  4. Воздух очищается по мере того, как водяной пар конденсируется и образует океаны. С течением времени в них растворяется двуокись углерода, и в атмосфере теперь преобладает азот. Из-за отсутствия кислорода не образуется защитный озоновый слой, и ультрафиолетовые солнечные лучи беспрепятственно достигают земной поверхности.
  5. Жизнь появляется в древних океанах в течение первого миллиарда лет. Простейшие сине-зеленые водоросли защищены от ультрафиолета морской водой. Они используют для производства энергии солнечный свет и двуокись углерода, при этом в качестве побочного продукта выделяется кислород, который начинает постепенно накапливаться в атмосфере.
  6. Миллиарды лет спустя формируется богатая кислородом атмосфера. Фотохимические реакции в верхних атмосферных слоях создают тонкий слой озона, который рассеивает вредный ультрафиолетовый свет. Теперь жизнь может выйти из океанов на сушу, где в результате эволюции возникает множество сложных организмов.

Миллиарды лет назад толстый слой примитивных водорослей начал выделять в атмосферу кислород. Они сохранились до сегодняшнего дня в виде окаменелостей, которые называются строматолитами.

Вулканическое происхождение

1. Древняя, безвоздушная Земля. 2. Извержение газов.

Согласно этой теории, на поверхности юной планеты Земля активно извергались вулканы. Ранняя атмосфера, вероятно, сформировалась тогда, когда газы, заключенные в кремниевой оболочке планеты, вырвались наружу через сопла вулканов.

– воздушная оболочка земного шара, вращающаяся вместе с Землёй. Верхнюю границу атмосферы условно проводят на высотах 150-200 км. Нижняя граница – поверхность Земли.

Атмосферный воздух представляет собой смесь газов. Большая часть его объёма в приземном слое воздуха приходится на азот (78%) и кислород (21%). Кроме того, в воздухе содержатся инертные газы (аргон, гелий, неон и др.), углекислый газ (0,03), водяной пар и различные твёрдые частицы (пыль, сажа, кристаллы солей).

Воздух бесцветен, а цвет неба объясняется особенностями рассеивания световых волн.

Атмосфера состоит из нескольких слоёв: тропосферы, стратосферы, мезосферы и термосферы.

Нижний приземной слой воздуха называется тропосферой. На различных широтах её мощность неодинакова. Тропосфера повторяет форму планеты и участвует вместе с Землёй в осевом вращении. У экватора мощность атмосферы колеблется от 10 до 20 км. У экватора она больше, а у полюсов – меньше. Тропосфера характеризуется максимальной плотностью воздуха, в неё сосредоточено 4/5 массы всей атмосферы. Тропосфера определяет погодные условия: здесь формируются различные воздушные массы, образуются облака и осадки, происходит интенсивное горизонтальное и вертикальное движение воздуха.

Над тропосферой, до высоты 50 км, располагается стратосфера. Она характеризуется меньшей плотностью воздуха, в ней отсутствует водяной пар. В нижней части стратосферы на высотах около 25 км. расположен «озоновый экран» – слой атмосферы с повышенной концентрацией озона, который поглощает ультрафиолетовое излучение, гибельное для организмов.

На высоте 50 до 80-90 км простирается мезосфера. С увеличением высоты температура понижается со средним вертикальным градиентом (0,25-0,3)° / 100 м, а плотность воздуха уменьшается. Основным энергетическим процессом является лучистый теплообмен. Свечение атмосферы обусловлены сложными фотохимическими процессами с участием радикалов, колебательно возбуждённых молекул.

Термосфера располагается на высоте 80-90 до 800 км. Плотность воздуха здесь минимальная, степень ионизации воздуха очень велика. Температура изменяется в зависимости от активности Солнца. В связи с большим количеством заряженных частиц здесь наблюдаются полярные сияния и магнитные бури.

Атмосфера имеет огромное значение для природы Земли. Без кислорода невозможно дыхание живых организмов. Её озоновый слой защищает всё живое от губительных ультрафиолетовых лучей. Атмосфера сглаживает колебание температур: поверхность Земли не переохлаждается ночью и не перегревается днём. В плотных слоях атмосферного воздуха не достигая поверхности планеты, сгорают от терния метеориты.

Атмосфера взаимодействует со всеми оболочками земли. С её помощью осуществляется обмен теплом и влагой между океаном и сушей. Без атмосферы не было бы облаков, осадков, ветров.

Значительное неблагоприятное влияние на атмосферу оказывает хозяйственная деятельность человека. Происходит загрязнение атмосферного воздуха, что приводит к увеличению концентрации оксида углерода (CO 2). А это способствует глобальному потеплению климата и усиливает «парниковый эффект». Озоновый слой Земли разрушается из-за отходов производств и работы транспорта.

Атмосфера нуждается в охране. В развитых странах осуществляется комплекс мер по защите атмосферного воздуха от загрязнения.

Остались вопросы? Хотите знать больше об атмосфере?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Состав атмосферы. Воздушная оболочка нашей планеты - атмосфера защищает земную поверхность от губительного воздействия на живые организмы ультрафиолетового излучения Солнца. Предохраняет она Землю и от космических частиц - пыли и метеоритов.

Состоит атмосфера из механической смеси газов: 78 % ее объема составляет азот, 21 % - кислород и менее 1 % - гелий, аргон, криптон и другие инертные газы. Количество кислорода и азота в воздухе практически неизменно, потому что азот почти не вступает в соединения с другими веществами, а кислород, который хотя и очень активен и расходуется на дыхание, окисление и горение, все время пополняется растениями.

До высоты примерно 100 км процентное соотношение этих газов остается практически неизменным. Это обусловлено тем, что воздух постоянно перемешивается.

Кроме названных газов в атмосфере содержится около 0,03 % углекислого газа, который обычно концентрируется вблизи от земной поверхности и размещается неравномерно: в городах, промышленных центрах и районах вулканической активности его количество возрастает.

В атмосфере всегда находится некоторое количество примесей - водяного пара и пыли. Содержание водяного пара зависит от температуры воздуха: чем выше температура, тем больше пара вмещает воздух. Благодаря наличию в воздухе парообразной воды возможны такие атмосферные явления, как радуга, рефракция солнечных лучей и т. п.

Пыль в атмосферу поступает во время вулканических извержений, песчаных и пыльных бурь, при неполном сгорании топлива на ТЭЦ и т. д.

Строение атмосферы. Плотность атмосферы меняется с высотой: у поверхности Земли она наивысшая, с поднятием вверх уменьшается. Так, на высоте 5,5 км плотность атмосферы в 2 раза, а на высоте 11 км - в 4 раза меньше, чем в приземном слое.

В зависимости от плотности, состава и свойств газов атмосферу разделяют на пять концентрических слоев (рис. 34).

Рис. 34. Вертикальный разрез атмосферы (стратификация атмосферы)

1. Нижний слой называют тропосферой. Ее верхняя граница проходит на высоте 8-10 км на полюсах и 16-18 км - на экваторе. В тропосфере содержится до 80 % всей массы атмосферы и почти весь водяной пар.

Температура воздуха в тропосфере с высотой понижается на 0,6 °C через каждые 100 м и у верхней ее границы составляет -45-55 °C.

Воздух в тропосфере постоянно перемешивается, перемещается в разных направлениях. Только здесь наблюдаются туманы, дожди, снегопады, грозы, бури и другие погодные явления.

2. Выше расположена стратосфера, которая простирается до высоты 50-55 км. Плотность воздуха и давление в стратосфере незначительны. Разреженный воздух состоит из тех же газов, что и в тропосфере, но в нем больше озона. Наибольшая концентрация озона наблюдается на высоте 15-30 км. Температура в стратосфере повышается с высотой и на верхней границе ее достигает 0 °C и выше. Это объясняется тем, что озон поглощает коротковолновую часть солнечной энергии, в результате чего воздух нагревается.

3. Над стратосферой лежит мезосфера, простирающаяся до высоты 80 км. В ней температура вновь понижается и достигает -90 °C. Плотность воздуха там в 200 раз меньше, чем у поверхности Земли.

4. Выше мезосферы располагается термосфера (от 80 до 800 км). Температура в этом слое повышается: на высоте 150 км до 220 °C; на высоте 600 км до 1500 °C. Газы атмосферы (азот и кислород) находятся в ионизированном состоянии. Под действием коротковолновой солнечной радиации отдельные электроны отрываются от оболочек атомов. В результате в данном слое - ионосфере возникают слои заряженных частиц. Самый плотный их слой находится на высоте 300-400 км. В связи с небольшой плотностью солнечные лучи там не рассеиваются, поэтому небо черное, на нем ярко светят звезды и планеты.

В ионосфере возникают полярные сияния, образуются мощные электрические токи, которые вызывают нарушения магнитного поля Земли.

5. Выше 800 км расположена внешняя оболочка - экзосфера. Скорость движения отдельных частиц в экзосфере приближается к критической - 11,2 мм/с, поэтому отдельные частицы могут преодолеть земное притяжение и уйти в мировое пространство.

Значение атмосферы. Роль атмосферы в жизни нашей планеты исключительно велика. Без нее Земля была бы мертва. Атмосфера предохраняет поверхность Земли от сильного нагревания и охлаждения. Ее влияние можно уподобить роли стекла в парниках: пропускать солнечные лучи и препятствовать отдаче тепла.

Атмосфера предохраняет живые организмы от коротковолновой и корпускулярной радиации Солнца. Атмосфера - среда, где происходят погодные явления, с которыми связана вся человеческая деятельность. Изучение этой оболочки производится на метеорологических станциях. Днем и ночью, в любую погоду метеорологи ведут наблюдения за состоянием нижнего слоя атмосферы. Четыре раза в сутки, а на многих станциях ежечасно измеряют температуру, давление, влажность воздуха, отмечают облачность, направление и скорость ветра, количество осадков, электрические и звуковые явления в атмосфере. Метеорологические станции расположены всюду: в Антарктиде и во влажных тропических лесах, на высоких горах и на необозримых просторах тундры. Ведутся наблюдения и на океанах со специально построенных кораблей.

С 30-х гг. XX в. начались наблюдения в свободной атмосфере. Стали запускать радиозонды, которые поднимаются на высоту 25-35 км, и при помощи радиоаппаратуры передают на Землю сведения о температуре, давлении, влажности воздуха и скорости ветра. В наше время широко используют также метеорологические ракеты и спутники. Последние имеют телевизионные установки, передающие изображение земной поверхности и облаков.

| |
5. Воздушная оболочка земли § 31. Нагревание атмосферы

Атмосфера Земли неоднородна: на разных высотах наблюдаются различная плотность воздуха и давление, меняется температура и газовый состав. На основании поведения температуры окружающего воздуха (т.е. растет температура с высотой или понижается) в ней выделяются следующие слои: тропосфера, стратосфера, мезосфера, термосфера и экзосфера. Границы между слоями называются паузами: их насчитывается 4, т.к. верхняя граница экзосферы очень размыта и часто относится к ближнему космосу. С общим строением атмосферы можно ознакомиться на прилагающейся схеме.

Рис.1 Строение атмосферы Земли. Credit: сайт

Самый нижний атмосферный слой - тропосфера, верхняя граница которой, называемая тропопаузой, в зависимости от географической широты различается и составляет от 8 км. в полярных до 20 км. в тропических широтах. В средних или умеренных широтах её верхняя граница лежит на высотах 10-12 км.. В течении года верхняя граница тропосферы испытывает колебания, зависящие от поступления солнечной радиации. Так в результате зондирования у Южного полюса Земли метеорологической службой США было выявлено, что, с марта до августа или сентября происходит неуклонное охлаждение тропосферы, в результате которого на короткий период в августе или сентябре её граница поднимается до 11,5 км. Затем, в период с с сентября по декабрь она быстро понижается и достигает своего самого низкого положения - 7,5 км, после которого её высота практически не изменяется до марта. Т.е. наибольшей своей толщины тропосфера достигает летом, а наименьшей зимой.

Стоит отметить, что кроме сезонных существуют и суточные колебания высоты тропопаузы. Также на её положение оказывают влияние циклоны и антициклоны: в первых она опускается, т.к. давление в них ниже чем в окружающем воздухе, во вторых соответственно поднимается.

Тропосфера содержит до 90% всей массы земного воздуха и 9/10 всего водяного пара. Здесь сильно развита турбулентность, особенно в приповерхностных и наиболее высоких слоях, развиваются облака всех ярусов, формируются циклоны и антициклоны. А благодаря накоплению парниковыми газами (углекислый газ, метан, водяной пар) отражённых от поверхности Земли солнечных лучей развивается парниковый эффект.

С парниковым эффектом связано понижение температуры воздуха в тропосфере с высотой (т.к. нагретая Земля больше тепла отдаёт приземным слоям). Средний вертикальный градиент составляет 0,65°/100 м (т.е. температура воздуха понижается на 0,65° C при подъёме на каждые 100 метров). Так если у поверхности Земли в районе экватора среднегодовая температура воздуха составляет +26° то на верхней границе -70°. Температура в районе тропопаузы над северным полюсом в течении года изменяется от -45° летом до -65° зимой.

С ростом высоты падает и давление воздуха, составляя у верхней границы тропосферы лишь 12-20% от приповерхностного.

На границе тропосферы и вышележащего слоя стратосферы лежит слой тропопаузы, толщиной 1-2 км. В качестве нижних границ тропопаузы обычно принимается слой воздуха в котором вертикальный градиент снижается до 0,2°/100 м против 0,65°/100 м в нижележащих районах тропосферы.

В пределах тропопаузы наблюдаются воздушные потоки строго определённого направления, называемые высотные струйные течения либо "реактивные потоки" (jet streams), образующиеся под влиянием вращения Земли вокруг своей оси и нагрева атмосферы при участии солнечной радиации. Наблюдаются течения на границах зон со значительными перепадами температур. Выделяют несколько очагов локализации этих течений, например, арктический, субтропический, субполярный и прочие. Знание локализации jet streams очень важно для метеорологии и авиации: первая использует потоки для более точного прогнозирования погоды, вторая для построения маршрутов полетов самолетов, т.к. на границах потоков существуют сильные турбулентные вихри, подобные небольшим водоворотам, называемые из-за отсутствия на этих высотах облачности "турбулентностью ясного неба".

Под влиянием высотных струйных течений в тропопаузе часто образуются разрывы, а временами она вообще исчезает, правда затем образуется заново. Особенно часто это наблюдается в субтропических широтах над которыми господствует мощное субтропическое высотное течение. Кроме того к формированию разрывов приводит различие слоёв тропопаузы по температуре окружающего воздуха. Например, обширный разрыв существует между тёплой и низкой полярной тропопаузой и высокой и холодной тропопаузой тропических широт. В последнее время выделяется и слой тропопаузы умеренных широт, который имеет разрывы с предыдущими двумя слоями: полярным и тропическим.

Вторым слоем земной атмосферы является стратосфера. Стратосферу условно можно разделить на 2 области. Первая из них, лежащая до высот 25 км характеризуется почти постоянными температурами, которые равны температурам верхних слоев тропосферы над конкретной местностью. Вторая область или область инверсии, характеризуется повышением температуры воздуха до высот примерно 40 км. Это происходит за счёт поглощения кислородом и озоном солнечного ультрафиолетового излучения. В верхней части стратосферы благодаря этому прогреву температура часто является положительной или даже сопоставима с температурой приземного воздуха.

Выше области инверсии находится слой постоянных температур, который носит название стратопаузы и является границей между стратосферой и мезосферой. Её толщина достигает 15 км.

В отличии от тропосферы в стратосфере редки турбулентные возмущения, но зато отмечены сильные горизонтальные ветры или струйные течения, дующие в узких зонах вдоль границ умеренных широт, обращённых к полюсам. Положение этих зон непостоянно: они могут смещаться, расширяться или даже вовсе исчезать. Часто струйные течения проникают в верхние слои тропосферы, или же наоборот массы воздуха из тропосферы проникают в нижние слои стратосферы. Особенно характерно подобное перемешивание масс воздуха в районах атмосферных фронтов.

Мало в стратосфере и водяного пара. Воздух здесь очень сух, а потому и облаков образуется мало. Лишь на высотах 20-25 км находясь в высоких широтах можно заметить очень тонкие перламутровые облака, состоящие из переохлажденных водяных капелек. Днём эти облака не видны, зато с наступлением темноты они кажутся светящимися из-за освещения их уже севшим за горизонт Солнцем.

На этих же высотах (20-25 км.) в нижней стратосфере существует так называемый озоновый слой - область с наибольшим содержанием озона, который образуется под воздействием ультрафиолетового солнечного излучения (более подробно об этом процессе вы можете узнать на странице ). Озоновый слой или озоносфера имеет чрезвычайную важность для поддержания жизни всех организмов живущих на суше, поглощая смертельно опасные ультрафиолетовые лучи с длиной волны до 290 нм. Именно по этой причине выше озонового слоя живые организмы не живут, он является верхней границей распространения жизни на Земле.

Под воздействием озона также изменяются магнитные поля, атомы распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений.

Слой атмосферы лежащий выше стратосферы называется мезосферой. Для него характерно понижение температуры воздуха с высотой со средним вертикальным градиентом 0,25-0,3°/100 м, что приводит к сильной турбулентности. У верхних границ мезосферы в области называемой мезопаузой были отмечены температуры до -138°С, что является абсолютным минимумом для всей атмосферы Земли в целом.

Здесь же в пределах мезопаузы проходит нижняя граница области активного поглощения рентгеновского и коротковолнового ультрафиолетового излучения Солнца. Подобный энергетический процесс получил название лучистый теплообмен. В результате происходит нагревание и ионизация газа, что обусловливает свечение атмосферы.

На высотах 75-90 км у верхних границ мезосферы были отмечены особые облака, занимающие в полярных регионах планеты обширные площади. Называют эти облака серебристыми из-за их свечения в сумерках, которое обусловлено отражением солнечных лучей от ледяных кристаллов, из которых эти облака состоят.

Давление воздуха в пределах мезопаузы в 200 раз меньше чем у земной поверхности. Это говорит о том, что практически весь воздух атмосферы сосредоточен в её 3 нижних слоях: тропосфере, стратосфере и мезосфере. На вышележащие слои термосферу и экзосферу приходится лишь 0,05% массы всей атмосферы.

Термосфера лежит на высотах от 90 до 800 км над поверхностью Земли.

Для термосферы характерен непрерывный рост температуры воздуха до высот 200-300 км, где она может достигать 2500°C. Рост температуры происходит за счёт поглощения молекулами газа рентгеновского и коротковолновой части ультрафиолетового излучения Солнца. Выше 300 км над уровнем моря рост температуры прекращается.

Одновременно с ростом температуры снижается давление, и, следовательно, плотность окружающего воздуха. Так если у нижних границ термосферы плотность составляет 1,8×10 -8 г/см 3 , то у верхних уже 1,8×10 -15 г/см 3 , что примерно соответствует 10 млн. - 1 млрд. частиц в 1 см 3 .

Все характеристики термосферы, такие как состав воздуха, его температура, плотность, подвержены сильным колебаниям: в зависимости от географического положения, сезона года и времени суток. Меняется даже расположение верхней границы термосферы.

Самый верхний слой атмосферы называется экзосферой или слоем рассеяния. Его нижняя граница постоянно меняется в очень широких пределах; за среднюю же величину принята высота 690-800 км. Устанавливается она там, где вероятностью межмолекулярных или межатомных столкновений можно пренебречь, т.е. среднее расстояние, которое преодолеет хаотически движущаяся молекула до столкновения с другой такой же молекулой (т.н. свободный пробег) будет настолько велико, что фактически молекулы с вероятностью близкой к нулю не столкнуться. Слой где имеет место сказываться описанное явление называется термопаузой.

Верхняя граница экзосферы лежит на высотах 2-3 тыс.км. Она сильно размыта и постепенно переходит в ближнекосмический вакуум. Иногда, по этой причине, экзосферу считают частью космического пространства, а за её верхнюю границу принимают высоту 190 тыс.км, на которой влияние давления солнечного излучения на скорости атомов водорода превышает гравитационное притяжение Земли. Это т.н. земная корона, состоящая из атомов водорода. Плотность земной короны очень мала: всего 1000 частиц в кубическом сантиметре, но и это число более чем в 10 раз превышает концентрацию частиц в межпланетном пространстве.

В связи в чрезвычайной разреженностью воздуха экзосферы частицы движутся вокруг Земли по эллиптическим орбитам, не сталкиваясь между собою. Некоторые же из них, двигаясь по разомкнутым или гиперболическим траекториям с космическими скоростями (атомы водорода и гелия) покидают пределы атмосферы и уходят в космическое пространство, по причине чего экзосферу называют сферой рассеяния.

Поделиться