Плавное включение и выключение светодиодов своими руками. Плавное выключение светодиодов подсветки

В некоторых случаях требуется реализовать схему плавного включения или выключения светодиода (LED). Особенно востребовано данное решение в организации дизайнерских решениях. Для осуществления задуманного есть два пути решения. Первый – покупка готового блока розжига в магазине. Второй – изготовление блока своими руками. В рамках статьи выясним, почему стоит прибегнуть ко второму варианту, а также разберем самые популярные схемы.

Покупать или делать самому?

Если нужно срочно или нет желания и времени собирать блок плавного включения светодиодов своими руками, то можно и купить готовое устройство в магазине. Единственный минус – цена. Стоимость некоторых изделий, в зависимости от параметров и производителя, может превышать в несколько раз себестоимости устройства сделанного своими руками.

Если есть время и особенно желание, то стоит обратить внимание на давно разработанные и проверенные временем схемы плавного включения и выключения светодиодов.

Что нужно

Для того, чтобы собрать схему плавного розжига светодиодов в первую очередь потребуется небольшой набор радиолюбителя, как навыков, так и инструментов:

  • паяльник и припой;
  • текстолит для платы;
  • корпус будущего устройства;
  • набор полупроводниковых приборов (резисторы, транзисторы, конденсаторы, светодиоды, диоды и т.д.);
  • желание и время;

Как видно из списка, ничего особенного и сложного не требуется.

Основа основ плавного включения

Давайте начнем с элементарных вещей и вспомним, что такое RC – цепь и как она связана с плавным розжигом и затуханием светодиода. Посмотрите на схему.

В ее состав входит всего три компонента:

  • R – резистор;
  • C – конденсатор;
  • HL1 – подсветка (светодиод).

Два первых компонента и составляют RC – цепь (произведение сопротивления и емкости). От увеличения сопротивления R и емкости конденсатора C увеличивается время розжига LED. При уменьшении, наоборот.

Мы не будем углубляться в основы электроники и рассматривать, как протекают физические процессы (точнее ток) в данной схеме. Достаточно знать, что она лежит в основе работы всех устройств плавного розжига и затухания.

Рассмотренный принцип RC – задержки лежит в основе всех решений плавного включения и выключения светодиодов.

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Работает от напряжения 12 Вольт по следующему алгоритму:

  1. При включении схемы в цепь питания через R2 протекает ток.
  2. В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
  3. Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
  4. Ток уходит на исток все того же полевика VT1 и далее на LED.
  5. Светодиод постепенно усиливает излучение света.

Затухание светодиода происходит при снятии питания. Принцип обратный. После отключения питания, конденсатор C1 начинает постепенно отдавать свою емкость на сопротивления R1 и R2.

Скорость разряда, а тем самым и скорость плавного затухания светодиода, может регулироваться номиналом сопротивления R3. Поэкспериментируйте, чтобы понять, как номинал влияет на быстроту розжига и затухания LED. Принцип следующий – выше сопротивление, медленнее затухание, и наоборот.

Главный элемент – это полевой n-канальный MOSFET транзистор IRF540, все остальные полупроводниковые приборы играют вспомогательную роль (обвязка). Стоит отметить его важные характеристики:

  • ток стока: до 23 Ампер;
  • полярность: n;
  • напряжение сток – исток: 100 Вольт.

Более детальную информацию, в том числе и ВАХ, можно найти на сайте производителя в datasheet.

Доработанный вариант с возможностью настройки времени

Рассмотренный выше вариант предполагает использование устройства без возможности регулировки времени розжига и затухания LED. А иногда это необходимо. Для реализации всего лишь нужно дополнить схему несколькими элементами, а именно R4, R5 – регулируемые сопротивления. Они предназначены для реализации функции подстройки времени полного включения и выключения нагрузки.

Рассмотренные схемы плавного розжига и затухания отлично подойдут для реализации дизайнерской подсветки в автомобиле (багажник, двери, область ног передних пассажиров).

Еще одна популярная схема

Вторая самая популярная схема плавного включения и выключения светодиодов очень похожа на две рассмотренные, но сильно отличаются по принципу работы. Управление включением происходит по минусу.

Широкое применение схемы нашли в тех местах, где одна часть контактов замыкается по минусу, а другая по плюсу.

Отличия схемы от рассмотренных ранее. Главное отличие – это другой транзистор. Полевик обязательно нужно заменить на p – канальный (маркировка указана на схеме ниже). Нужно «перевернуть» конденсатор, теперь плюс кондера пойдет на исток транзистора. Не забывайте, доработанный вариант имеет питание с обратной полярностью.

Видео

Для углубленного понимания всего происходящего в рассмотренных вариантах предлагаем посмотреть интересное видео, автор которого, при помощи программы проектировки электронных схем, постепенно показывает принцип работы плавного включения и выключения светодиода на разных вариантах. Внимательно посмотрев видео, Вы поймете почему обязательно нужно использовать транзистор.

Вывод

Рассмотренные решения являются самыми популярными и востребованными. В сети интернет, на формуах ведутся большие дискуссии по поводу простоты и малой функциональности данных схем, однако практика показала, что в быту их функционала хватает сполна. Большой плюс рассмотренных решений включения и выключения светодиодов – это простота изготовления и низкая себестоимость. Для разработки готового решения уйдет не более 3-7 часов.

Регулятор яркости светодиодной подсветки приборов авто.
Схема плавного розжига светодиодов.

Многие автолюбители переделывают подсветку приборной панели своего авто с обычных ламп накаливания на светодиоды, и зачастую, особенно при использовании супер-ярких, приборка сияет как новогодняя елка и режет по глазам ярким свечением, что требует применения дополнительного устройства, с помощью которого можно регулировать уровень яркости, как говорится, на свой вкус. Вообще существуют два метода регулировки, это аналоговое регулирование, которая заключается в изменении уровня постоянного тока светодиода, и ШИМ регулирование, то есть периодическое включение и выключение тока через светодиод на регулируемые промежутки времени. При ШИМ-регулировке частота импульсов должна быть не ниже 200 Гц, иначе на глаз будет заметно мерцание светодиодов. Ниже приведена принципиальная схема простейшего блока, реализованного на микросхеме-таймере NE555, отечественным аналогом которой является КР1006ВИ1, эта микросхема и формирует широтно-импульсные сигналы управления.

Уровень яркости подсветки регулируется переменным резистором номиналом 50 кОм, то есть этим резистором изменяется скважность импульсов управления. В качестве регулирующего элемента применен N-канальный полевой транзистор IRFZ44N, который можно заменить, например, на IRF640 или подобный.

Делать перечень примененных элементов наверно нет смысла, их в схеме не так уж и много, поэтому перейдем к рассмотрению печатной платы.

Печатная плата разработана в программе Sprint Layout, вид платы данного формата выглядит следующим образом:

Фото-вид платы ШИМ-регулятора LAY6 формата:

У многих возникает желание добавить к схеме регулятора эффект плавного розжига, и в этом нам поможет широко распространенная в интернете простенькая схемка:

На печатной плате мы разместили обе вышеприведенных схемы, и схему регулятора, и схему плавного розжига. LAY6 формат платы выглядит так:

Фото-вид LAY6 формата:

Фольгированный текстолит для платы односторонний, размер 24 х 74 мм.

Для установления желаемого времени розжига и затухания поиграйте номиналами резисторов, обозначенных на печатной плате звездочками, так же это время зависит от номинала электролитической емкости в схеме розжига, расположенной над выходным гнездом LED (С увеличением номинала конденсатора увеличится время).

Обращаем ваше внимание, что в схеме плавного розжига применен P-канальный MOSFET. Ниже показана цоколевка транзисторов:

В дополнение к статье приводим еще один пример схемы с регулятором яркости и плавным розжигом светодиодов приборной панели авто:

Размер архива с материалами статьи – 0,4 Mb.

В некоторых случаях от LED ламп или индикаторов требуется плавное включение и выключение. Естественно светодиод при обычной подаче питания включается мгновенно (в отличии от ламп накаливания), что требует применения в данном случае небольшой схемы управления. Она не сложная и в простейшем варианте представляет собой всего десяток радиодеталей, во главе с парочкой транзисторов.

Сборник принципиальных схем

Вначале идут общеизвестные схемы из Интернета, а далее несколько собранных лично и прекрасно работающих. Первая схема простейшая - при подаче питания диод постепенно увеличивает яркость (открывается транзистор по мере заряда конденсатора):

Делал вот такую схему плавного включения и выключения светодиодов, резистором R7 подбирается нужный ток через диод. А если вместо кнопки подключить вот этот прерыватель, то схемка сама будет разжигаться и затухать, только резистором R3 нужно установить нужный интервал времени.

Вот ещё две схемы плавного розжига и затухания, которые также лично паял:

Все эти конструкции относятся не к сетевым (от 220 В), а обычным низковольтным светодиодным индикаторам. Промышленные LED лампы с их неизвестными драйверами, чаще всего в разных плавных контроллерах работают непредсказуемо (или мигают, или включаются всё-таки резко). Так что управлять нужно не драйверами, а непосредственно светодиодами. Схемы предоставил senya70.

Принцип работы схемы:

Управляющий «плюс» поступает через диод 1N4148 и резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 68 кОм начинает заряжаться конденсатор. Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540. Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы. При снятии управляющего напряжения транзистор КТ503 закрывается. Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм. После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен.

Схема с управляющим минусом:

Отмечена распиновка IRF9540N

Схема с управляющим плюсом:


Отмечена распиновка IRF9540N и KT503

В этот раз изготавливать схему решил методом ЛУТ (лазерно-утюжная технология). Делал я это первый раз в жизни, сразу скажу, что ничего сложного нет. Для работы нам понадобится: лазерный принтер, глянцевая фотобумага (или страница глянцевого журнала) и утюг.

К О М П О Н Е Н Т Ы:

Транзистор IRF9540N
Транзистор KT503
Выпрямительный диод 1N4148
Конденсатор 25V100µF
Резисторы:
- R1: 4.7 кОм 0.25 Вт
- R2: 68 кОм 0.25 Вт
- R3: 51 кОм 0.25 Вт
- R4: 10 кОм 0.25 Вт
Односторонний стеклотекстолит и хлорное железо
Клеммники винтовые, 2-х и 3-х контактные, 5 мм

При необходимости, изменить время розжига и затухания светодиодов можно подбором номинала сопротивления R2, а также подбором ёмкости конденсатора.


Р А Б О Т А:
?????????????????????????????????????????
?1? В этой записи подробно покажу, как изготавливать плату с управляющим плюсом. Плата с управляющим минусом делается аналогично, даже чуть проще из-за меньшего количества элементов. Отмечаем на текстолите границы будущей платы. Края делаем чуть больше, чем рисунок дорожек, а затем вырезаем. Существует много способов резки текстолита: ножовкой по металлу, ножницами по металлу, с помощью гравера и так далее.

Я с помощью канцелярского ножа сделал бороздки по намеченным линиям, далее выпилил ножовкой и обточил края напильником. Также пробовал использовать ножницы по металлу – оказалось гораздо проще, удобнее и без пыли.

Далее прошкуриваем заготовку под водой наждачной бумагой с зернистостью P800-1000. Затем сушим и обезжириваем поверхность платы 646 растворителем с помощью безворсовой салфетки. После этого нельзя руками прикасаться к поверхности платы.

2? Далее с помощью программы SprintLayot открываем и печатаем на лазерном принтере схему. Печатать необходимо только слой с дорожками без обозначений. Для этого в программе при печати слева вверху в разделе “слои” снимаем ненужные галочки. Также при печати в настройках принтера выставляем высокую четкость и максимальное качество изображения. Программу и чуть доработанные мной схемы залил для Вас на Яндекс.Диск.

С помощью малярного скотча приклеиваем на обычный лист А4 страницу глянцевого журнала/глянцевую фотобумагу (если их размеры меньше А4) и печатаем на ней нашу схему.

Я пробовал использовать кальку, страницы глянцевого журнала и фотобумагу. Удобнее всего, конечно, работать с фотобумагой, но в отсутствии последней и страницы журнала вполне сгодятся. Калькой же пользоваться не советую – рисунок на плате очень плохо пропечатался и получится нечётким.

3? Теперь прогреваем текстолит и прикладываем нашу распечатку. Затем утюгом с хорошим прижимом проутюживаем плату в течение нескольких минут.

Теперь даем плате полностью остыть, после чего опускаем в ёмкость с холодной водой на несколько минут и аккуратно избавляемся от бумаги на плате. Если целиком не отдирается, то скатываем потихоньку пальцами.

Затем проверяем качество пропечатанных дорожек, и плохие места подкрашиваем тонким перманентным маркером.


4? С помощью двустороннего скотча приклеиваем плату на кусочек пенопласта и помещаем в раствор хлорного железа на несколько минут. Время вытравливания зависит от многих параметров, поэтому периодически достаем и проверяем нашу плату. Хлорное железо используем безводное, разводим в теплой воде согласно пропорциям, указанным на упаковке. Чтобы ускорить процесс травления можно периодически покачивать ёмкость с раствором.

После того, как ненужная медь стравилась – отмываем плату в воде. Затем с помощью растворителя или наждачки счищаем тонер с дорожек.

5? Затем необходимо просверлить дырочки для монтажа элементов платы. Для этого я использовал бормашинку (гравер) и сверла диаметром 0.6 мм и 0.8 мм (из-за разной толщины ножек элементов).

6? Далее нужно облудить плату. Есть множество различных способов, я решил воспользоваться одним из самых простых и доступных. С помощью кисточки смазываем плату флюсом (например ЛТИ-120) и паяльником лудим дорожки. Главное не держать жало паяльника на одном месте, иначе возможен отрыв дорожек при перегреве. Берем на жало больше припоя и ведем им вдоль дорожки.

7? Теперь напаиваем необходимые элементы согласно схеме. Для удобства в SprintLayot распечатал на простой бумаге схему с обозначениями и при пайке сверял правильность расположения элементов.

8? После пайки очень важно полностью смыть флюс, в противном случае могут быть коротыши между проводниками (зависит от применяемого флюса). Сначала рекомендую тщательно протереть плату 646 растворителем, а потом хорошо промыть щеткой с мылом и высушить.

После сушки подключаем «постоянный плюс» и «минус» платы к питанию («управляющий плюс» не трогаем), затем вместо светодиодной ленты подсоединяем мультиметр и проверяем, нет ли напряжения. Если хоть какое-то напряжение все-таки присутствует, значит где-то коротит, возможно плохо смыли флюс.

Ф О Т О Г Р А Ф И И:

Убрал плату в термоусадку

В И Д Е О:

?????????????????????????????????????????
И Т О Г:
?????????????????????????????????????????
Проделанной работой я доволен, хоть и потратил достаточно много времени. Процесс изготовления плат методом ЛУТ показался мне интересным, и несложным. Но, не смотря на это, в процессе работы допустил, наверное, все ошибки, какие только возможно. Но на ошибках, как говориться, учатся.

Подобная плата плавного розжига светодиодов имеет достаточно широкое применение и может использоваться, как в автомобиле (плавный розжиг ангельских глазок, панели приборов, подсветки салона и т.п.), так и в любом другом месте, где есть светодиоды и питание от 12В. Например, в подсветке системного блока компьютера или декорировании подвесных потолков.

Поделиться