Чему равен заряд и масса электрона. Электрон

Электрон - отрицательно заряженная элементарная частица, принадлежащая к классу лептонов (см. Элементарные частицы), носитель наименьшей известной сейчас массы и наименьшего электрического заряда в природе. Открыт в 1897 г. английским ученым Дж. Дж. Томсоном.

Электрон - составная часть атома, число электронов в нейтральном атоме равно атомному номеру, т. е. числу протонов в ядре.

Первые точные измерения электрического заряда электрона провел в 1909-1913 гг. американский фиаик Р. Милликен. Современное значение абсолютной величины элементарного заряда составляет единиц СГСЭ или примерно Кл. Считается, что этот заряд действительно «элементарен», т. е. он не может быть разделен на части, а заряды любых объектов являются его целыми кратными.

Вы, возможно, слышали о кварках с электрическими зарядами и но, по-видимому, они прочно заперты внутри адронов и в свободном состоянии не существуют. Вместе с постоянной Планка h и скоростью света с элементарный заряд образует безразмерную постоянную = 1/137. Постоянная тонкой структуры - один из важнейших параметров квантовой электродинамики, она определяет интенсивность электромагнитных взаимодействий (наиболее точное современное значение = 0,000015).

Масса электрона г (в энергетических единицах ). Если справедливы законы сохранения энергии и электрического заряда, то запрещены любые распады электрона, такие, как и т. п. Поэтому электрон стабилен; экспериментально получено, что время его жизни не менее лет.

В 1925 г. американские физики С. Гаудсмит и Дж. Уленбек для объяснения особенностей атомных спектров ввели внутренний момент количества движения электрона - спин (s). Спин электрона равен половине постоянной Планка , но физики обычно говорят просто, что спин электрона равен = 1/2. Со спином электрона связан его собственный магнитный момент . Величина эрг/Гс называется магнетоном Бора МБ (это принятая в атомной и ядерной физике единица измерения магнитного момента; здесь h - постоянная Планка, и m - абсолютная величина заряда и масса электрона, с - скорость света); числовой коэффициент - это -фактор электрона. Из квантовомеханического релятивистского уравнения Дирака (1928) следовало значение т. е. магнитный момент электрона должен был равняться в точности одному магнетону Бора.

Однако в 1947 г. в опытах было обнаружено, что магнитный момент примерно на 0,1% больше магнетона Бора. Объяснение этого факта было дано с учетом поляризации вакуума в квантовой электродинамике. Весьма трудоемкие вычисления дали теоретическое значение (0,000000000148), которое можно сравнить с современными (1981) экспериментальными данными: для электрона и позитрона (0,000000000050).

Величины вычислены и измерены с точностью до двенадцати знаков после запятой, причем точность экспериментальных работ выше точности теоретических расчетов. Это самые точные измерения в физике элементарных частиц.

Особенностями движения электронов в атомах, подчиняющегося уравнениям квантовой механики, определяются оптические, электрические, магнитные, химические и механические свойства веществ.

Электроны участвуют в электромагнитных, слабых и гравитационных взаимодействиях (см. Единство сил природы). Так, вследствие электромагнитного процесса происходит аннигиляция электрона и позитрона с образованием двух -квантов: . Электроны и позитроны высоких энергий могут участвовать и в других процессах электромагнитной аннигиляции с образованием адронов: адроны. Сейчас такие реакции усиленно изучаются на многочисленных ускорителях на встречных -пучках (см. Ускорители заряженных частиц).

Слабые взаимодействия электронов проявляются, например, в процессах с несохранением четности (см. Четность) в атомных спектрах или в реакциях между электронами и нейтрино .

Не имеется никаких данных о внутренней структуре электрона. Современные теории исходят из представлений о лептонах как о точечных частицах. В настоящее время это проверено экспериментально до расстояний см. Новые данные могут появиться лишь с повышением энергии столкновения частиц в будущих ускорителях.

Электроном является элементарная частица, являющаяся одной из главных единиц в структуре вещества. Заряд электрона отрицательный. Самый точные измерения были сделаны в начале двадцатого века Милликеном и Иоффе.

Заряд электрона равен минус 1,602176487 (40)*10 -1 9 Кл.

Через эту величину измеряется электрический заряд других мельчайших частиц.

Общее понятие об электроне

В физике элементарных частиц говорится, что электрон — неделимый и не обладающий структурой. Он задействован в электромагнитных и гравитационных процессах, принадлежит к лептоновой группе, так же как и его античастица — позитрон. Среди других лептонов обладает самым легким весом. Если электроны и позитроны сталкиваются, это приводит к их аннигиляции. Подобная пара может возникнуть из гамма-кванта частиц.

До того как измерили нейтрино, именно электрон считался самой легкой частицей. В квантовой механике его относят к фермионам. Также электрон имеет магнитный момент. Если к нему относят и позитрон, то разделяют позитрон как положительно заряженную частицу, а электрон называют негатроном, как частицу с отрицательным зарядом.

Отдельные свойства электронов

Электроны относят к первому поколению лептонов, со свойствами частиц и волн. Каждый из них наделен состоянием кванта, которое определяют в результате измерения энергии, спиновой ориентации и других параметров. Принадлежность к фермионам у него раскрывается через невозможность нахождения в одном состоянии кванта одновременно двух электронов (по принципу Паули).

Его изучают так же, как квазичастицу в периодическом кристаллическом потенциале, у которой эффективная масса способна существенно отличаться от массы в состоянии покоя.

Посредством движения электронов происходит электрический ток, магнетизм и термо ЭДС. Заряд электрона в движении образует магнитное поле. Однако внешнее магнитное поле отклоняет частицу от прямого направления. При ускорении электрон приобретает способность поглощения или излучения энергии в качестве фотона. Из его множества состоят электронные атомические оболочки, число и положение которых определяют химические свойства.

Атомическая масса в основном состоит из ядерных протонов и нейтронов, в то время как масса электронов состовляет порядка 0,06 % от всего атомного веса. Электрическая сила Кулона является одной из главных сил, способных удерживать электрон рядом с ядром. Но когда из атомов создаются молекулы и возникают химические связи, электроны перераспределяются в новом образованном пространстве.

В появлении электронов участвуют нуклоны и адроны. Изотопы с радиоактивными свойствами способны излучать электроны. В условиях лабораторий эти частицы могут изучаться в специальных приборах, а например, телескопы могут детектировать от них излучения в плазменных облаках.

Открытие

Электрон открыли немецкие физики в девятнадцатом веке, когда изучали катодные свойства лучей. Затем другие ученые стали более детально изучать его, выводя в ранг отдельной частицы. Изучалось излучение и другие связанные физические явления.

К примеру, группа во главе с Томсоном оценила заряд электрона и массу катодных лучей, отношения которых, как она выяснили, не зависят от материального источника.
А Беккерель выяснил, что минералы излучают радиацию сами по себе, а их бета-лучи способны отклоняться посредством воздействия электрического поля, причем у массы и заряда сохранялось то же отношение, что и у катодных лучей.

Атомная теория

Согласно этой теории, атом состоит из ядра и электронов вокруг него, расположенных в виде облака. Они находятся в неких квантованных состояниях энергии, изменение которых сопровождается процессом поглощения или излучения фотонов.

Квантовая механика

В начале двадцатого века была сформулирована гипотеза, согласно которой материальные частицы имеют свойства как собственно частиц, так и волн. Также и свет способен проявляться в виде волны (ее называют волной де Бройля) и частиц (фотонов).

В результате было сформулировано знаменитое уравнение Шредингера, где описывалось распространение электронных волн. Этот подход и назвали квантовой механикой. При помощи него вычисляли электронные состояния энергии в атоме водорода.

Фундаментальные и квантовые свойства электрона

Частица проявляет фундаментальные и квантовые свойства.

К фундаментальным относятся масса (9,109*10 -31 килограмм), элементарный электрический заряд (то есть минимальная порция заряда). Согласно тем измерениям, что проведены до настоящего времени, у электрона не обнаруживается никаких элементов, способных выявить его субструктуру. Но некоторые ученые придерживаются мнения, что он является точечной заряженной частицей. Как указано в начале статьи, электронный электрический заряд - это -1,602*10 -19 Кл.

Являясь частицей, электрон одновременно может быть волной. Эксперимент с двумя щелями подтверждает возможность его одновременного прохождения через обе из них. Это вступает в противоречие со свойствами частицы, где каждый раз возможно прохождение только через одну щель.

Считается, что электроны имеют одинаковые физические свойства. Поэтому их перестановка, с точки зрения квантовой механики, не ведет к изменению системного состояния. Волновая функция электронов является антисимметричной. Поэтому ее решения обращаются в нуль тогда, когда одинаковые электроны попадают в одно квантовое состояние (принцип Паули).

Как показано выше, масса электрона однозначно определяется параметрами среды ДУХ - электрической и магнитной проницаемостью. Эти константы следует считать неизменными, по крайней мере, в нашей Галактике и, с большой вероятностью, - во Вселенной. Поэтому и масса электрона является постоянной. Частица электрон/позитрон является единственной элементарной частицей, рождаемой в среде ДУХ . Масса электрона и его заряд - минимально возможные структурные характеристики единицы материи в Природе.

Заблуждением многих учёных (И. Пригожин, Г. Шипов, А. Шлёнов, А. Рыков и др.) следует считать предположении о возможности рождения средой «эфир» или в физическом вакууме из хаоса любых элементарных частиц и материальных объектов, вплоть до чёрных дыр и галактик. Рождённый вращением в среде электрон - это частица является основой материального мира и из этой частицы постепенным усложнением структур создаётся весь материальный мир. Поэтому это единственный «кирпичик» строения всего мироздания, всего сущего (вопрос о существовании позитрона будет рассмотрен ниже).

В квантовой физике и пустом координатном пространстве у электрона не может быть размера, а, исходя из дуализма, то есть представлений об электроне, как о волне, используется значение «классического радиуса электрона» r 0 , выраженного через постоянную тонкой структуры α и радиус первой Боровской орбиты в атоме водорода a 0 : r 0 = α 2 · a 0 = 2,8179 ·10 -15 м. Это значение получено как сечение взаимодействия квантов с электроном. Это не размер самого электрона, а размер окружающего его «облака» среды ДУХ, с которым и происходит взаимодействие. В естествознании выглядит совершенно нелепо то, что этот «классический радиус» оказывается в два раза больше размера протона, который в 1837 раз больше по массе, но теоретически имеет меньший радиус, чем электрон («классический радиус протона» равен 1,5347·10-18 м).

Представление в современной физике электрона и других частиц электромагнитными волнами - дуализм - требует коренного пересмотра. Если у частицы - электрона нельзя указать месторасположение в пространстве и размер, то это физический парадокс. Выше было определено, что главной характеристикой материальных объектов является наличие их границы с окружающей средой ДУХ. Частица электрон имеет границу раздела. И. Дмитриев представил несколько оценок и расчётов размера электрона.

Исходя из представленной им структуры протона из 1837 электронов и позитронов, сформированных в семи мезонах с гексагональной кристаллической структурой (см. 3.2.10), радиус протона составляет 27 - 30 электронных радиусов. Приняв как наиболее достоверные данные для величины радиуса протона (1,2 - 1,35) ·10 -15 м, он получил оценку радиуса электрона R e = 4,5· 10 -17 м . .

Исходя из представления о спине частицы, как импульсе вращения вокруг одной из трёх осей координат (две другие координатные оси вращения электрона определяют его заряд), а также учитывая, что физическое значение спина хорошо известно, радиус электрона был рассчитан как проекция центрального момента количества вращения массовой частицы на одну спиновую ось. «Более точное значение спина электрона, позитрона, нейтрино и антинейтрино, а, значит, и всех других субатомных частиц - фермионов равно:

S 0 = ¼ m 0 · c · R e = ± h /(4 π c без ) = ± 6,6261·10 -34 /(4 π√ 2,998·10 8 = ± 3,04539· 10 -39 кг·м 2 /с.

Откуда для радиуса электрона получено:

R e = 4· S 0 /(m e · c ) = 4·3,04539·10 -39 /(0,91095·10 -30 ·2,99792·10 8 = 4,4605·10 -17 м » (в этих выражениях с - скорость света, а с без - то же значение, но безразмерное)» .

Ещё одна важная для понимания взаимодействия электрона со средой оценка его размера была получена расчётом отношения объёма к поверхности. Закономерность такого подхода соответствует сформулированному выше закону развития МИРА и экспериментально обоснованному Дмитриевым принципа максимума конфигурационной энтропии. Свободный «электрон образует вокруг себя сферические электрическое и гравитационное силовые поля, каждое из которых по отношению к любой внешней взаимодействующей с электроном частице оказывается центральным полем. Следовательно, эти поля являются функциями объёма электрона. Но любое взаимодействие с внешними объектами происходит через поверхность. Поэтому для каждого внешнего воздействия должно иметь особое значение частное от деления объёма электрона на его поверхность, имеющее смысл доли объёма внутреннего свойства электрона, приходящейся на единицу его поверхности, или относительного количества излучаемого силового поля через единицу поверхности электрона». «Поскольку масса электрона является квадратичной функцией угловой скорости, а взаимодействие двух частиц является квадратичной функцией электрического заряда или массы частиц и расстояния между ними, нас должна интересовать величина квадрата отношения объёма U e к поверхности S e электрона:

(U e / S e ) 2 = (4/3π R e 3 )/(4 π R e 2 )} 2 = R e 2 /9 = 2,210·10 -34 м2 .

3(U e / S e ) 2 = 6, 630· 10 -34 м2 ≈ h = 6,626176·10 -34 Дж·с, где h - постоянная Планка.

Отсюда, без учёта размерностей: (U e / S e ) 2 = h /3 , а R e = (3 h ) 1/2 = 4,4585·10 -17 м» .

Радиус электрона оказывается непосредственно связанным с постоянной Планка, что свидетельствует о их физической зависимости и ещё раз подтверждает надёжность определения размера электрона. Таких случайностей быть не должно. Это яркое подтверждение единства законов МИРА, их относительной простоты.

Тот факт, что И. Дмитриев использовал безразмерное значение скорости света, а постоянной Планка соответствует размерность м 2 , свидетельствует, что действующая система физических единиц измерения не вполне соответствует физической шкале явлений и введённых природных констант (в этом мы убедились выше, когда физический смысл имело использование обратных величин электрической и магнитной постоянной, об этом же см. 1.3.3.2., 4.1.2, 4.2.2, 4.4.2.1).

И. Дмитриев сформулировал закон: «Квадрат частного от деления объема электрона (позитрона) на его поверхность, умноженный на единицу массы и деленный на единицу времени, равен безразмерному сферическому объему, деленному на безразмерную сферическую поверхность и умноженному на константу Планка. После элементарного алгебраического сокращения получаем: радиус электрона (позитрона) в метрах равен корню квадратному из числового значения константы Планка, умноженного на 3. Тот, кто знает значение планковской константы и умеет вычислять квадратный корень, может в уме раз и навсегда посчитать для физиков радиус электрона и позитрона: число (4,458 плюс, минус 0,002), умноженное на десять в минус семнадцатой степени метра» .

Вычислив среднее из полученных оценок, и отмечая естественную не сферичность электрона (приплюснутость полюсов), Дмитриев предлагает для оценки радиуса электрона использовать значение

R e = (4,458±0,002)·10 -17 м .

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Мы упоминали уже о частицах атомов, движущихся по проводам, внутри радиоламп, рентгеновских трубок и многих других приборов. Эти частицы, получившие назва­ние электронов, являются мельчайшими частичками отри­цательного электричества.

В отличие от атомов химических элементов электрон является элементарной частичкой; мы никогда не наблю­

Дали её частей; при современных возможностях мы не мо­жем разбить её на части. Электрон - это наименьший от­рицательный электрический заряд.

Все электроны совершенно одинаковы, независимо от того, какому атому они принадлежали или принадлежат.

Масса электрона в 1838 раз меньше массы легчайшего (водородного) атома и равна

О, ООО ООО ООО ООО ООО ООО ООО ООО ООО 910 660 грамма.

Электрический заряд одного электрона также чрезвы­чайно мал. Через нить горящей двадцативаттной лам­почки (при юродском напряжении в сети) каждую се­кунду проходит миллиард миллиардов электронов; все они весят менее одной миллиардной доли грамма!

Невольно напрашивается вопрос, как были опреде­лены с такой точностью заряд и масса электрона?

Чтобы измерить заряд и массу электрона, нужно прежде всего получить свободные, не связанные с веще­ством электроны. Для этого существует множество спосо­бов. Электроны вырываются как из твёрдого вещества, так и из молекул и атомов газа при сильном нагревании, в некоторых случаях при освещении светом, в особен­ности невидимыми ультрафиолетовыми лучами и ещё лучше - рентгеновыми лучами. Особенно легко можно вырывать электроны из металлов, в которых они очень свободно перемещаются (в этом отличие металлов от не­проводников-изоляторов, в которых электроны «крепко связаны»).

Итак, мы имеем свободные электроны. Можно ли не­посредственно, на весах, взвесить один электрон? Оче­видно, это невозможно, он слишком мал. Но оказалось возможным определить заряд электрона, а затем косвен­ным путём найти и его массу.

Представьте себе крошечную капельку масла, мед­ленно падающую между двумя металлическими пластин­ками под действием силы тяжести (рис. 8). Создадим на капельке электрический заряд. Тогда падение капельки можно будет приостановить, зарядив пластинки, между которыми движется капелька, так, чтобы верхняя пла­стинка притягивала заряд капельки, а нижняя отталки­вала его. Капелька остановится, если электрическая сила, тянущая вверх заряд капельки, окажется в точности рав­ной силе тяжести, которая тянет капельку вниз.

Таким образом, мы сможем определить действующую на капельку электрическую силу, а значит, и её заряд; не­обходимо только точно знать силу тяжести, действующую на капельку, а для этого нужно знать и её массу. Массу капельки удалось определить, определив скорость её сво­бодного падения (без действия электрических сил), - чем тяжелее капелька, тем быстрее падает она, преодолевая сопротивление воздуха.

Этим способом был определён заряд электрона.

Опыт проводился так. Пульверизатор, расположенный над пластинками, распылял немного масла. Нужно было

Подождать, пока какая-либо из капелек масла не попа­дала между пластинками, проникая туда через крошеч­ное, специально для этого сделанное отверстие в верхней пластинке. С помощью специального микроскопа очень точно определялась скорость падения капельки. После этого на короткое время зажигалась рентгеновская лам­па. Рентгеновы лучи, проходя между пластинками, выры­вали из молекул воздуха множество электронов. Очень скоро один или несколько электронов или положительно заряженных молекул оседало на капельку; капелька при­обретала необходимый заряд. Затем пластинкам сооб­щался заряд такой величины, чтобы капелька повисла неподвижно.

Определив наименьший из зарядов, который могла нести капелька, нашли заряд одного электрона. Все другие получавшиеся заряды были больше найденного
наименьшего в два, в три, в четыре и в большее целое число раз, что соответствовало двум, трём, четырём и более электронам, осевшим на капельку.

Теперь нужно определить его массу, не взвешивая его. Как это сделать?

Представьте себе поток невидимых заряженных части­чек, проносящихся между заряженными пластинками (или полюсами магнита). Под действием электрических (или магнитных) сил они отклоняются вниз (рис. 9). Цель, в которую попадают частички, мы видим благодаря экрану, покрытому сернистым цинком, или обычной фото­пластинке. Сернистый цинк светится от ударов заряжен­ных частичек, а на фотопластинку эти заряженные

Частицы действуют так же, как и лучи света. Мы видим по маленькой светящейся точке на экране (или чёрной точке на фотопластинке), как отклонились частички. Мы можем судить о массе частичек, если знаем их скорость и силу, которая вызвала отклонение. А силу эту мы знаем, зная заряд частичек.

На самом деле прибор, конечно, оказывается гораздо более сложным, чем изображённый на рисунке, так как нужно ещё получить частички с одинаковой скоростью.

Определив массу электрона, мы убеждаемся в том, что эти мельчайшие отрицательно заряженные частички обла­дают массой, во много раз меньшей массы любого атома.

У этого термина существуют и другие значения, см. Электрон (значения). «Электрон 2» «Электрон» серия из четырёх советских искусственных спутников Земли, запущенных в 1964 году. Цель … Википедия

Электрон - (Новосибирск,Россия) Категория отеля: 3 звездочный отель Адрес: 2 ой Краснодонский Переулок … Каталог отелей

ЭЛЕКТРОН - (символ е, е), первая элем. ч ца, открытая в физике; матер. носитель наименьшей массы и наименьшего электрич. заряда в природе. Э. составная часть атомов; их число в нейтр. атоме равно ат. номеру, т. е. числу протонов в ядре. Заряд (е) и масса… … Физическая энциклопедия

Электрон - (Москва,Россия) Категория отеля: 2 звездочный отель Адрес: Проспект Андропова 38 строение 2 … Каталог отелей

Электрон - (e , e) (от греческого elektron янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10 19 Кл и массой 9´10 28 г. Относится к классу лептонов. Открыт английским физиком… … Иллюстрированный энциклопедический словарь

ЭЛЕКТРОН - (е е), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10 28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.… …

ЭЛЕКТРОН - (обозначение е), устойчивая ЭЛЕМЕНТАРНАЯ ЧАСТИЦА с отрицательным зарядом и массой покоя 9,1310 31 кг (что составляет 1/1836 от массы ПРОТОНА). Электроны были обнаружены в 1879 г. английским физиком Джозефом Томсоном. Они движутся вокруг ЯДРА,… … Научно-технический энциклопедический словарь

электрон - сущ., кол во синонимов: 12 дельта электрон (1) лептон (7) минерал (5627) … Словарь синонимов

ЭЛЕКТРОН - искусственный спутник Земли, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами один по траектории, лежащей ниже, а другой выше радиационных поясов. В 1964 запущено 2 пары Электронов … Большой Энциклопедический словарь

ЭЛЕКТРОН - ЭЛЕКТРОН, элктрона, муж. (греч. elektron янтарь). 1. Частица с наименьшим отрицательным электрическим зарядом, образующая в соединении с протоном атом (физ.). Движение электронов создает электрический ток. 2. только ед. Легкий магниевый сплав,… … Толковый словарь Ушакова

ЭЛЕКТРОН - ЭЛЕКТРОН, а, м. (спец.). Элементарная частица с наименьшим отрицательным электрическим зарядом. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Книги

  • Электрон. Энергия Космоса , Ландау Лев Давидович, Китайгородский Александр Исаакович. Книги лауреата Нобелевской премии Льва Ландау и Александра Китайгородского - тексты, переворачивающие обывательское представление об окружающем мире. Большинство из нас, постоянно сталкиваясь… Купить за 491 руб
  • Электрон Энергия космоса , Ландау Л., Китайгородский А.. Книги лауреата Нобелевской премии Льва Ландау и Александра Китайгородского тексты, переворачивающие обывательское представление об окружающем мире. Большинствоиз нас, постоянно сталкиваясь с…
Поделиться